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The International Energy Agency (IEA) was established in 1974 within the framework of the Organisation for Economic Co-operation
and Development (OECD) to implement an international energy programme. A basic aim of the IEA is to foster international co-operation
among the 30 IEA participating countries and to increase energy security through energy research, development and demonstration in
the fields of technologies for energy efficiency and renewable energy sources.

The IEA co-ordinates international energy research and development (R&D) activities through a comprehensive portfolio of Technology
Collaboration Programmes (TCPs). The mission of the IEA Energy in Buildings and Communities (IEA EBC) TCP is to support the
acceleration of the transformation of the built environment towards more energy efficient and sustainable buildings and communities,
by the development and dissemination of knowledge, technologies and processes and other solutions through international collaborative
research and open innovation. (Until 2013, the IEA EBC Programme was known as the |IEA Energy Conservation in Buildings and
Community Systems Programme, ECBCS.)

The high priority research themes in the EBC Strategic Plan 2019-2024 are based on research drivers, national programmes within the
EBC participating countries, the Future Buildings Forum (FBF) Think Tank Workshop held in Singapore in October 2017 and a Strategy
Planning Workshop held at the EBC Executive Committee Meeting in November 2017. The research themes represent a collective input
of the Executive Committee members and Operating Agents to exploit technological and other opportunities to save energy in the
buildings sector, and to remove technical obstacles to market penetration of new energy technologies, systems and processes. Future
EBC collaborative research and innovation work should have its focus on these themes.

At the Strategy Planning Workshop in 2017, some 40 research themes were developed. From those 40 themes, 10 themes of special
high priority have been extracted, taking into consideration a score that was given to each theme at the workshop. The 10 high-priority
themes can be separated into two types: 'Objectives’ and 'Means'. These two groups are distinguished to better understand the different
themes.

Objectives - The strategic objectives of the EBC TCP are as follows:

— reinforcing the technical and economic basis for refurbishment of existing buildings, including financing, engagement of stakeholders
and promotion of co-benefits;

— improvement of planning, construction and management processes to reduce the performance gap between design stage
assessments and real-world operation;

— the creation of 'low tech’, robust and affordable technologies;

— the further development of energy efficient cooling in hot and humid, or dry climates, avoiding mechanical cooling if possible;

— the creation of holistic solution sets for district level systems taking into account energy grids, overall performance, business models,

engagement of stakeholders, and transport energy system implications.

Means - The strategic objectives of the EBC TCP will be achieved by the means listed below:

— the creation of tools for supporting design and construction through to operations and maintenance, including building energy
standards and life cycle analysis (LCA);

— benefitting from 'living labs' to provide experience of and overcome barriers to adoption of energy efficiency measures;

— improving smart control of building services technical installations, including occupant and operator interfaces;

— addressing data issues in buildings, including non-intrusive and secure data collection;

— the development of building information modelling (BIM) as a game changer, from design and construction through to operations

and maintenance.

The themes in both groups can be the subject for new Annexes, but what distinguishes them is that the 'objectives' themes are final
goals or solutions (or part of) for an energy efficient built environment, while the 'means' themes are instruments or enablers to reach
such a goal. These themes are explained in more detail in the EBC Strategic Plan 2019-2024.

Overall control of the IEA EBC Programme is maintained by an Executive Committee, which not only monitors existing projects, but
also identifies new strategic areas in which collaborative efforts may be beneficial. As the Programme is based on a contract with the
IEA, the projects are legally established as Annexes to the IEA EBC Implementing Agreement. At the present time, the following
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projects have been initiated by the IEA EBC Executive Committee, with completed projects identified by (*) and joint projects with the
IEA Solar Heating and Cooling Technology Collaboration Programme by (3:X):

Annex 1:
Annex 2:
Annex 3:
Annex 4:
Annex 5:
Annex 6:
Annex 7:
Annex 8:
Annex 9:

Load Energy Determination of Buildings (*)

Ekistics and Advanced Community Energy Systems (*)
Energy Conservation in Residential Buildings (*)
Glasgow Commercial Building Monitoring (*)

Air Infiltration and Ventilation Centre

Energy Systems and Design of Communities (*)

Local Government Energy Planning (*)

Inhabitants Behaviour with Regard to Ventilation (*)
Minimum Ventilation Rates (*)

Annex 10: Building HVAC System Simulation (*)

Annex 11: Energy Auditing (*)

Annex 12: Windows and Fenestration (*)

Annex 13: Energy Management in Hospitals (*)

Annex 14: Condensation and Energy (*)

Annex 15: Energy Efficiency in Schools (*)

Annex 16: BEMS 1- User Interfaces and System Integration (*)

Annex 17: BEMS 2- Evaluation and Emulation Techniques (*)

Annex 18: Demand Controlled Ventilation Systems (*)

Annex 19: Low Slope Roof Systems (*)

Annex 20: Air Flow Patterns within Buildings (*)

Annex 21: Thermal Modelling (*)

Annex 22: Energy Efficient Communities (*)

Annex 23: Multi Zone Air Flow Modelling (COMIS) (*)

Annex 24: Heat, Air and Moisture Transfer in Envelopes (*)

Annex 25: Real time HVAC Simulation (*)

Annex 26: Energy Efficient Ventilation of Large Enclosures (*)

Annex 27: Evaluation and Demonstration of Domestic Ventilation Systems (*)

Annex 28: Low Energy Cooling Systems (*)

Annex 29: 3t Daylight in Buildings (*)

Annex 30: Bringing Simulation to Application (*)

Annex 31: Energy-Related Environmental Impact of Buildings (*)

Annex 32: Integral Building Envelope Performance Assessment (*)

Annex 33: Advanced Local Energy Planning (*)

Annex 34: Computer-Aided Evaluation of HYAC System Performance (*)

Annex 35: Design of Energy Efficient Hybrid Ventilation (HYBVENT) (*)

Annex 36: Retrofitting of Educational Buildings (*)

Annex 37: Low Exergy Systems for Heating and Cooling of Buildings (LowEXx) (*)

Annex 38: 3.t Solar Sustainable Housing (*)

Annex 39: High Performance Insulation Systems (*)

Annex 40: Building Commissioning to Improve Energy Performance (*)

Annex 41: Whole Building Heat, Air and Moisture Response (MOIST-ENG) (*)

Annex 42: The Simulation of Building-Integrated Fuel Cell and Other Cogeneration Systems (FC+COGEN-SIM) (*)
Annex 43: 3.t Testing and Validation of Building Energy Simulation Tools (*)

Annex 44: Integrating Environmentally Responsive Elements in Buildings (*)

Annex 45: Energy Efficient Electric Lighting for Buildings (*)

Annex 46: Holistic Assessment Tool-kit on Energy Efficient Retrofit Measures for Government Buildings (EnERGo) (*)
Annex 47: Cost-Effective Commissioning for Existing and Low Energy Buildings (*)

Annex 48: Heat Pumping and Reversible Air Conditioning (*)

Annex 49: Low Exergy Systems for High Performance Buildings and Communities (*)

Annex 50: Prefabricated Systems for Low Energy Renovation of Residential Buildings (*)
Annex 51: Energy Efficient Communities (*)

Annex 52: 3.x Towards Net Zero Energy Solar Buildings (*)

Annex 53: Total Energy Use in Buildings: Analysis and Evaluation Methods (*)

Annex 54: Integration of Micro-Generation and Related Energy Technologies in Buildings (*)
Annex 55: Reliability of Energy Efficient Building Retrofitting - Probability Assessment of Performance and Cost (RAP-RETRO) (*)
Annex 56: Cost Effective Energy and CO2 Emissions Optimisation in Building Renovation (*)
Annex 57: Evaluation of Embodied Energy and CO2 Equivalent Emissions for Building Construction (*)
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Annex 58: Reliable Building Energy Performance Characterisation Based on Full Scale Dynamic Measurements (*)
Annex 59: High Temperature Cooling and Low Temperature Heating in Buildings (*)

Annex 60: New Generation Computational Tools for Building and Community Energy Systems (*)

Annex 61: Business and Technical Concepts for Deep Energy Retrofit of Public Buildings (*)

Annex 62: Ventilative Cooling (*)

Annex 63: Implementation of Energy Strategies in Communities (*)

Annex 64: LowEx Communities - Optimised Performance of Energy Supply Systems with Exergy Principles (*)
Annex 65: Long-Term Performance of Super-Insulating Materials in Building Components and Systems (*)
Annex 66: Definition and Simulation of Occupant Behavior in Buildings (*)

Annex 67: Energy Flexible Buildings (*)

Annex 68: Indoor Air Quality Design and Control in Low Energy Residential Buildings (*)

Annex 69: Strategy and Practice of Adaptive Thermal Comfort in Low Energy Buildings (*)

Annex 70: Energy Epidemiology: Analysis of Real Building Energy Use at Scale (*)

Annex 71: Building Energy Performance Assessment Based on In-situ Measurements (*)

Annex 72: Assessing Life Cycle Related Environmental Impacts Caused by Buildings (*)

Annex 73: Towards Net Zero Energy Resilient Public Communities (*)

Annex 74: Competition and Living Lab Platform (*)

Annex 75: Cost-effective Building Renovation at District Level Combining Energy Efficiency and Renewables (*)
Annex 76: 3.X Deep Renovation of Historic Buildings Towards Lowest Possible Energy Demand and CO, Emissions (*)
Annex 77: 3t Integrated Solutions for Daylight and Electric Lighting (*)

Annex 78: Supplementing Ventilation with Gas-phase Air Cleaning, Implementation and Energy Implications (*)
Annex 79: Occupant-Centric Building Design and Operation (*)

Annex 80: Resilient Cooling (*)

Annex 81: Data-Driven Smart Buildings

Annex 82: Energy Flexible Buildings Towards Resilient Low Carbon Energy Systems

Annex 83: Positive Energy Districts

Annex 84: Demand Management of Buildings in Thermal Networks

Annex 85: Indirect Evaporative Cooling

Annex 86: Energy Efficient Indoor Air Quality Management in Residential Buildings

Annex 87: Energy and Indoor Environmental Quality Performance of Personalised Environmental Control Systems
Annex 88: Evaluation and Demonstration of Actual Energy Efficiency of Heat Pump Systems in Buildings
Annex 89: Ways to Implement Net-zero Whole Life Carbon Buildings

Annex 90: EBC Annex 90 / SHC Task 70 Low Carbon, High Comfort Integrated Lighting

Annex 91: Open BIM for Energy Efficient Buildings

Annex 92: Smart Materials for Energy-Efficient Heating, Cooling and IAQ Control in Residential Buildings
Annex 93: Energy Resilience of the Buildings in Remote Cold Regions

Annex 94: Validation and Verification of In-situ Building Energy Performance Measurement Techniques

Annex 95: Human-centric Building Design and Operation for a Changing Climate

Annex 96: Grid Integrated Control of Buildings

Working Group - Energy Efficiency in Educational Buildings (*)

Working Group - Indicators of Energy Efficiency in Cold Climate Buildings (*)

Working Group - Annex 36 Extension: The Energy Concept Adviser (*)

Working Group - HVAC Energy Calculation Methodologies for Non-residential Buildings (*)
Working Group - Cities and Communities

Working Group - Building Energy Codes
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Advanced HVAC control is one of the most promising applications of “big data” from building automation
systems, energy meters, and other sources. These advanced control strategies leverage access to data from
sensors and building mechanical systems, that would have been unimaginable a few decades ago.

Considering the significant potential of data-driven approaches to optimise building performance, Subtask B
of Annex 81 was devoted specifically to this topic. Other components of Annex 81 addressed complementary
themes: Subtask A focused on data governance, platforms, and dataset utilization; Subtask C on advanced
applications such as benchmarking, fault detection, and building—grid integration; and Subtask D on case
studies, innovation strategies, and dissemination.

This report summarises the contributions, activities, major findings, and conclusions of Subtask B, which
focused on the application of emerging data for model-based predictive control (MPC) and other data-driven
advanced control strategies, such as reinforcement learning (RL).

MPC uses a mathematical model of a building and its systems to optimise the building’s operation over a
control horizon, typically ranging from a few hours to a few days. Unlike conventional building operation,
which is often “reactive” (e.g. heating activates only when temperatures drop below a setpoint), MPC adopts
a “proactive” approach. It anticipates future conditions, such as weather, occupancy or pricing signals, and
prepares accordingly. For example, MPC can optimise start times for heating or cooling, close motorised
blinds in anticipation of solar gains, or plan energy storage charging when favourable. Similarly, RL can
leverage historical or synthetic data (from digital models) to learn how various control actions affect perfor-
mance and make informed decisions based on expected scenarios. Data plays a crucial role in developing
optimal control strategies in both cases.

Subtask B activities, included: the collection of data from relevant case studies (Activity B1); a discussion on
suitable modelling techniques for control applications (Activity B2); the use of a detailed simulation engine
as a platform for in silico testing of control strategies (Activity B3); and a reflection on the importance of
incorporating uncertainty (e.g. forecasts, model parameters, unknown factors) within control-oriented models
to accelerate MPC deployment (Activity B4).

Additional research and discussion with industry practitioners, focussed on developing recommendations for
policymakers on how to support industry adoption. The output of this work is included in a previous Annex
report (Opportunities for Government Leadership on Data-Driven Smart Buildings.pdf). This work helped
launch a survey initiative within ASHRAE (the leading North American professional organisation for heating,
ventilation and air conditioning professionals) aimed at identifying and addressing barriers to the adoption of
MPC.

The collective experience of the Annex participants confirmed the strong potential of advanced control to
improve both energy efficiency and occupant comfort.

Among Subtask B’s recommendations to support wider adoption of data-driven control strategies is the need
for a dedicated effort in properly structuring and managing data from building automation systems, thus mak-
ing it easily accessible and available to the relevant users, while taking measures for IT. Supporting this
recommendation, data was collected from case study sites in Activity B1. This data has been published and
made available to facilitate exploring modelling approaches and advanced control techniques.

A key conclusion from the collection of data-driven models in Activity B2 is the pressing need to accelerate
(even automate) the development of models for control applications. These models—typically classified as
“white-box,” “grey-box,” or “black-box” based on their complexity and dependence on data—capture the di-
versity of real-world scenarios, including differences in building types, control applications, data availability,
system configurations, and energy market contexts.
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https://annex81.iea-ebc.org/Data/publications/Opportunities%20for%20Government%20Leadership%20on%20Data-Driven%20Smart%20Buildings.pdf

Activities B3 and B4 explored two distinct approaches to accelerating the deployment of data-driven building
operation: (1) developing, testing, and comparing control strategies using an offline platform; and (2) employ-
ing simplified models that trade complexity for the ability to account for uncertainty.

Offline high-fidelity testing environments, such as BOPTEST, which served as the primary platform in Activity
B3, enable the creation of standardised control solutions using a detailed digital twin in a “closed-loop” as a
testing environment. This approach has been applied in initiatives like the ASHRAE Guideline 36 to develop
systematic control sequences for energy-efficient performance.

Subtask B participants reported outcomes from several control methods, including MPC and RL, tested under
standardised conditions. These showed that both MPC and RL data-driven controllers typically out-performed
the traditional baseline controller by around 20%. MPC generally performed better than RL controllers, alt-
hough RL controllers have the advantage of not needing a control-oriented model.

These results were obtained from a limited number of comparable studies. More such studies are required,
covering more diverse building configurations and use-case scenarios. The BOPTEST library of building
emulator models should be expanded to cover these extra cases.

Activity B4 explored a complementary perspective, focusing on the use of low-order data-driven models
(simple resistive-capacitive thermal models based on a bare minimum of parameters calibrated with real
data). Simple models are flexible enough to account for the limitations of the underlying data implicitly, the
uncertainty of forecast variables like temperature, solar radiation, and occupancy, and even the influence of
unforeseen factors, while delivering meaningful information for decision-making within an optimal (or near-
optimal) control strategy. Moreover, simple models facilitate the assessment of the energy flexibility potential
of buildings, i.e. their capacity to respond to pricing signals, and the adoption of a hierarchical control ap-
proach, suitable for optimising energy exchanges in buildings, communities, cities and regions.

Finally, building on these insights, a main takeaway of Subtask B is that data-driven control will be an essen-
tial factor in integrating smart buildings within the smart grid. MPC, RL and other data-driven control strate-
gies have significant potential to enhance energy efficiency and support decarbonization, particularly from
the perspective of load management, energy flexibility, and resilience. As buildings become more integrated
with the smart grid, they will help seamlessly coordinate centralised and distributed energy resources. Con-
sequently, data-driven building operations will be increasingly important in this integration. This topic will be
the focus of future R&D efforts.
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Abbreviations

Abbreviations Meaning

AR Autoregressive Model

ARIMA Autoregressive Integrated Moving Average
ARX Autoregressive Model with Exogenous Inputs
BOPTEST Building Optimisation Testing Framework
ca&l Commercial and Institutional Buildings
DDPG Deep Deterministic Policy Gradient

DER Distributed Energy Resources

DKSQP Dieter Kraft's Sequential Quadratic Programming
DQN Double-deep Q-network (RL technique)

DRL Deep Reinforcement Learning

DSF Demand-side Flexibility

DSL Domain-Specific Language

FCU Fan-coil Unit

FF Flexibility Function

FMI Functional Mock-Up Interface

FMU Functional Mock-Up Unit

GDM Gradient Descent Methods

GRU Gated Recurrent Unit

HVAC Heating, Ventilating and Air-Conditioning

KPI Key Performance Indicator

LSTM Long-short Term Memory

MDP Markov Decision Process

MLP Multi-layer Perceptron (a type of neural network)
MSE Mean Square Error

MPC Model Predictive Control

PPO Proximal Policy Optimisation (RL technique)
Q-network Neural network used in RL

QRDQN Quantile Regression Deep Q-network (RL technique)
RBC Rule-Based Control

RC Resistive-Capacitive model

RNN Recurrent neural network

RES Renewable Energy Sources

RL Reinforcement Learning

SAC Soft Actor-Critic algorithm (RL technique)
SDE Stochastic Differential Equation

SEOS Smart Energy Operating System

SQP Sequential Quadratic Programming
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New requirements for building HVAC systems have emerged as part of global efforts to decarbonise energy
systems and improve building resilience in response to a changing climate. These requirements include
flexible load management, enhanced coordination with electric grids and other district energy systems, and
tighter integration of distributed energy resources (DER). Consequently, this development calls for innovative
HVAC control strategies that are more responsive to current and future operating conditions while optimising
for multiple objectives. These new control strategies must rely on an increased awareness of current condi-
tions, an understanding of system behaviour based on past performance, and the ability to anticipate the
system's future behaviour over a relevant time horizon. Such control strategies, which are made possible
through the availability of large datasets, are hereafter referred to as Data-Driven Control. These strategies
have therefore become the focus of numerous recent research, development, and demonstration efforts.

While Annex 81 focused primarily on Model-based Predictive Control, our work included other significant
data-driven strategies (most notably Reinforcement Learning). This section defines some basic terminology
and summarises the structure of Subtask B activities.

Model-based predictive control (MPC) is one of the most promising applications of data to improve the oper-
ation of buildings (Figure 1.1), although its potential has not been fully tapped (Drgofia et al., 2020). In this
type of control approach (also known as “model predictive control”), a suitable mathematical model of a
building and its systems provides forecasts, which then allows for control strategies to be scheduled in ad-
vance, provided that reliable forecasts of future conditions (which usually include weather conditions, building
occupancy rates, energy prices, among other foreseeable events) are available.
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Historical weather data \ (“Virtual image”) e —
-16 -16 ’
M e B f: Building
_____ -
i il

=
i
+ + P — - environment

I

1T

e g -
W S N
M - | — g MPC routine I
-
Historical BAS data + + = Iy~ [=L ~1 Community-scale
) - — R i P | solutions
The COM may include: i 8 ) .
/ Building dynamics L ‘ ¢
. *+ HVACsystems Cost .
- Bl C 0s Optimal i vehi
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Figure 1.1: Schematic representation of model-based predictive control.

As illustrated in Figure 1.1, the Model Predictive Controller works in the following steps:

o Step 1: Data collection. In this step, diverse data streams are obtained, including historical weather
conditions (ambient temperature, solar irradiance, humidity, etc.), recorded data from building
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automation systems and other sources, and, if necessary, complementary synthetic data from highly
detailed models (if available). These datasets are used for the creation of a model that can be used
for MPC. The datasets should be as information rich as possible, and reflect a panoply of weather
conditions, modes of operation, setpoint transitions, etc.

e Step 2: Development of control-oriented model. Once enough data has been collected, an ap-
propriate control-oriented model is developed. This model aims to provide sufficient information for
a control algorithm to decide on the best control action within an upcoming period (denominated the
control horizon). Ideally, this model should be accurate enough to provide reliable information for
decision-making, yet simple enough that optimisation problems can be easily formulated and solved
in real time.

o Step 3: Optimisation routine (MPC). Once an appropriate model has been developed, an optimi-
sation routine is carried out to determine (via one of a vast range of optimisation algorithms) the
optimal solution under a cost function or objective function. This cost function can include total costs,
energy use, electric peak demand, GHG emissions, thermal comfort limits, wear and tear of equip-
ment, etc.

e Step 4: Sending signals to systems being controlled. Finally, the control decisions made in the
previous step are sent to the different systems being controlled, such as the HVAC system, EV
chargers, energy storage devices, activation of renewables. Feedback from these systems can then
be used to adjust the model in Step 2, thus having an impact on the optimisation routine.

MPC is useful in virtually any situation where knowledge of the future within a reasonable timeframe allows
for better decision-making. For example, a solar radiation forecast enables the planning of electricity use
based on the anticipated production of solar panels. Foreseeing a sudden drop in outdoor temperature allows
for adjusting the building's indoor temperature setpoints to "pre-heat" it without exceeding comfort limits to
avoid energy use during peak hours. Anticipating the human occupancy of an office makes it possible to
activate an underfloor heating system. A thermal energy storage system (e.g. a water tank) allows for “stock-
piling” energy collected during a particularly favourable period. The expectation of possible overheating in a
space due to excessive solar gains can enable the gradual closing of motorised blinds. The examples are
numerous and varied, and can be applied to all kinds of scales, from a small office, a medium-sized building
(e.g. a school), a larger one (such as a hospital or a university campus) or an entire building cluster or
neighbourhood.

Even today, most control strategies implemented in commercial and institutional buildings are still based on
basic rules for supervisory level control (winter/summer mode, schedule-based setpoints) and on some basic
"feedback control" loops, such as on/off thermostatic control, and "PID" loops (proportional, integral, deriva-
tive control). Although MPC has not yet taken off as a standard practice in the building mechanical systems
control industry, there is widespread recognition of its potential, confirmed in numerous studies, for managing
electricity demand (and consequently the relationship between buildings and the power grid), reducing green-
house gas emissions, providing economic benefits to building operators, and significantly improving the well-
being and comfort of building occupants.

The advent of "big data" (ever more abundant, with better resolution and containing additional variables) and
the possibility of having better and easier access to this data are key pieces that allow us to glimpse the first
steps towards the popularization of MPC. Subtask B focused on investigating how the availability of "big
data" could be instrumental in driving the standardization of model creation, implementation procedures and
ultimately the widespread adoption of MPC.

In a research context, MPC has been studied following two approaches, illustrated respectively in Figure 1.2
and Figure 1.3. Firstly, an implementation of MPC in an existing building (which is the final objective) implies
the collection of data in a real building, based on the instrumentation of a BAS, energy meters, readings from
loT devices (Figure 1.2). Data acquisition could also include unconventional sources, such as Wi-Fi connec-
tions, readings from security systems, etc.
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As illustrated in Figure 1.2, continuous communication between the real building and a control system will
enable data to be transferred from the building automation system and used by the control algorithm. This
control algorithm is written using a programming tool. Programming languages could be either commercial
domain specific languages (DSL) within the building automation system or a general tool (e.g., Python,
MATLAB, etc.). This control algorithm will use a control-oriented model, a mathematical representation of the
building behaviour at appropriate time scales. The control-oriented model is usually (but not always) a sim-
plified mathematical model, "grey box" or "black box" type, with relatively few parameters, which allows for
short-term prediction of the building's behaviour. This type of model facilitates formulating and solving com-
plex optimisation problems.

MPC also requires a forecast of relevant variables (e.g., weather and occupancy) over a horizon ranging
from a few minutes up to a few days. Finally, the control strategy is selected according to an objective func-
tion. The objective function varies depending on the goal pursued by the operator: cost, comfort, GHG re-
duction, peak demand reduction, energy savings, etc. Information travels towards the real building, conveying
the optimal control actions calculated within the optimisation algorithm using the control-oriented model. Con-
versely, measured data is collected from the real building and used to improve the accuracy of the control-
oriented model.

/ Control-Oriented Model\ / Real Building \
—

* Used for decision-making and

optimization of control actions over a L
; 101

control-horizon.
| N

« Often (not always) a grey-box or black 1n1

box formulation. 10
[ | I |
st TN Data
. e ’u‘._: O—0 -+ —— —
T oSy * Datacollected from building
QE o Control .
X=Ax+Bu _ Actions automation system (BAS), energy
y=Cx+Du B =a[nt)tmi )]l —_— meters, loT devices, etc.

* Simpler modelintended to facilitate * Historical data + real-time data are
calculations over a short horizon continuously transferred to update
(minutes to days) the control-oriented model.

« Model contained within the * Control actions, obtained from the

optimizationroutine, are

optimizationroutine (the “brain”) of e i ”
Qe control system. / Qerlodlcally introduced into the By

Figure 1.2: MPC implementation in a real building.

It is sometimes convenient to study the application of an MPC algorithm in the context of a "closed loop" simulation, i.e.
without interaction with a real system. For this type of study, carried out completely in a numerical simulation framework
(Figure 1.3: Implementation of MPC with an emulator.

), one must have a mathematical model known as an "emulator," a simulation model that faithfully repro-
duces, with as much fidelity as possible, a real building. Colloquially, this type of model is called a digital twin,
although this terminology is less often used in more formal settings.
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Figure 1.3: Implementation of MPC with an emulator.

Similarly to how the MPC algorithm interacts with a real building, control decisions are sent to the emulator,
which then generates synthetic operational data to update and fine-tune the control-oriented model.

Using an emulator to study and compare control strategies has several advantages. For example, "virtual
experiments" can be conducted under reproducible conditions and using fair comparison criteria. Implement-
ing MPC in a real-world context faces the challenge of comparing the effect of a real control action with the
hypothetical results of a "benchmark" set of control actions. In contrast, an emulator allows replicating the
same conditions, as many times as necessary, under alternative control sequences and providing consistent,
reliable results. An emulator also enables different research teams to tackle the same problem, to provide a
way to compare fairly and rigorously the results of their proposed strategies. It is worth noting that control-
oriented models are needed both in a real implementation and in a study using an emulator. These types of
models (not quite "digital twins", but perhaps "digital cousins") are part of the controller itself and an essential
element for control decision-making.

MPC consistently yields significant benefits; a recent review article of field implementations found average
savings of 25% in electricity use and energy costs, and about 17% in GHG emissions (Saloux et al., 2025).

Reinforcement learning (RL) is another data-driven control approach that has received significant attention
recently. In reinforcement learning, a branch of machine learning, a controller (or control agent) applies a set
of control actions to a building system with the goal of maximising a reward, such as energy cost, energy
flexibility, thermal comfort or GHG emissions (Vazquez-Canteli and Nagi, 2019; Wang and Hong, 2020).
Reinforcement learning can be described through a Markov Decision Process (MDP), represented by a fuple
(S, A P,R):
e S: State is a mathematical description of the current situation of a system (the “environment), such
as a building, by means of relevant parameters (e.g., room temperatures).

e A: Action is the execution of a decision on how to operate the system, such as valve positions,
temperature setpoints, etc.

e P: Transition probability is the mathematical description of the likelihood of the next state, given the
current state and the action.
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o R: Reward function: describes the immediate reward for taking at a given time step.
The rules that govern which action to take under a given are described by a policy function (), which maps
states to actions:

7:S—> A

The main goal of the reinforcement learning controller or agent is to find the optimal = that will maximise the
rewards. This policy is typically derived by collecting a large dataset of examples illustrating the outcomes of
specific actions taken under given situations. This approach, similar to humans learn through “trial and error”,
has been successfully used in areas such as robotics.

While the main challenge of MPC is the laborious procedure involved in model creation, in principle, rein-
forcement learning can develop effective operational policies without a model. Nevertheless, the main chal-
lenge consists in obtaining sufficient data to derive an appropriate control policy. The collection of examples
is often carried out within a “virtual environment”, which may include a model or collection of models that
provide an accurate representation of what will happen when an action takes place. This type of “training
environment” is sometimes called a “gym”, metaphorically expressing how the agent develops by intensively
applying control actions to a large set of situations.

Some key terms mentioned in this report are succinctly defined to help the reader navigate jargon that might
sometimes become confusing.

e Agent. In the context of reinforcement learning, an agent is a controller or entity which decides which
action to take as a function of the conditions in the environment and the optimal policy (w), developed
through trial and error to optimise a certain reward.

o Control-oriented model. A simplified mathematical model of the building (which is baked into the
controller itself) to forecast the future state and energy consumption of the building if different control
actions were to be taken. The MPC controller can use the control-oriented model to optimise deci-
sion-making, considering both current and future conditions.

e Controller. A control algorithm (e.g., PID controller, MPC controller, or RL controller).

o Emulator. A high-fidelity simulation model of a specific building system which is used to replicate,
as closely as possible, the behaviour of a real system at appropriate time scales for building opera-
tion. It enables testing and evaluation of advanced control strategies in a closed loop (i.e., “offline”,
within a confined computer simulation), as it is the “next best thing” to a real building.

o Hyperparameter: In reinforcement learning (RL), hyperparameters are configuration settings that
are not learned during training but are manually defined before training begins. They influence how
the learning process unfolds, such as learning rate, discount factor, or network architecture.

o Optimiser: Algorithm used to find the optimal solution according to an objective function or reward.

o Solver: This term refers to an algorithm that finds a solution to a mathematical problem. In the context
of optimisation, it specifically refers to an algorithm whose purpose is to find the optimal solution (in
this sense, it will be a synonym for “optimiser”).

e Surrogate modelling: simpler model that reproduces the behaviour of a more complex system. It is
akin to a control-oriented model, but it can have a more general purpose.
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Figure 1.4 shows how the activities within Subtask B were organised. These activities concern various as-
pects of predictive control, namely: the collection and organisation of data (B1), the creation of control-ori-
ented models (B2), studies of MPC performance within an emulator environment (B3), and investigations
relating to the challenges of implementing predictive control in real time. The most relevant results of these
activities are presented in the following pages. Activities B1-B4 fed into the development of a policy roadmap
(activity B5), which has been detailed in an earlier report.

B.1. Test cases
Compilation of a manageable number of test cases that illustrate MPC and are relevant for the participants.

B.2. Control-oriented modelling methods
.| The participants in Subtask B will test diverse methods to create
control-oriented models for the test cases.

JdIN 10y dewpeoy “s'g

B.3. MPC Simulation and Evaluation
*| MPC scenarios will be tested in a simulation environment containing a
detailed model (an emulator) and the control-oriented models.
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B.4. MPC Real Building Implementation

.| This activity will provide recommendations to address different practical
challenges associated with the implementation of MPC (data retrieval,
forecasting, optimization, hierarchy of controllers, etc.)

Figure 1.4: Subtask B Structure.

The first chapter of this report presents background information on data-driven control, the basic concepts of
model-based predictive control (MPC), its operation in a real building and within an emulator, a brief intro-
duction to reinforcement learning, and an overview of the main structure of the work carried out in Subtask
B. Chapter 2 describes the work conducted in Activity B1 on test case collection. Chapter 3 focuses on
Activity B2, discussing diverse modelling approaches used in MPC case studies. Chapter 4 covers Activity
B3 and the studies conducted within BOPTEST, an emulator framework, on different control approaches.
Chapter 5 outlines Activity B4's approach to implementing an MPC algorithm in buildings in the context of a
smart grid, incorporating uncertainty treatment and a hierarchical approach. Finally, Chapter 6 presents con-
cluding remarks.
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This activity has been a joint effort by the Annex participants to compile a diverse range of datasets suitable
for advanced control applications of indoor climate and energy use in buildings. Initially, more than twenty
test cases were collected for consideration from all the participants in the Annex who provided the necessary
information through a common template. These cases corresponded to real buildings, from experimental/lab
setups or simulations. It was then decided to continue working with 6 test cases from real buildings, where
both the available dataset itself and the metadata (relevant contextual information) were of high quality.

All test case datasets had either been collected for developing a model to be used in MPC applications or
were judged to be suitable for the purpose. The datasets have been made publicly available for download at
the Mendeley Data repository:

o https://data.mendeley.com/datasets/xztfbtsqys/3

The datasets are described in detail an open access data paper:
o lIgor Sartori, Harald Taxt Walnum, Kristian S. Skeie, Laurent Georges, Michael D. Knudsen,
Peder Bacher, José Candanedo, Anna-Maria Sigounis, Anand Krishnan Prakash, Marco Pritoni,
Jessica Granderson, Shiyu Yang, Man Pun Wan (2023) Sub-hourly measurement datasets from
6 real buildings: Energy use and indoor climate, Data in Brief, 48-109149, ISSN 2352-3409.
DOI: https://doi.org/10.1016/j.dib.2023.109149.

This report focuses on describing the test cases, i.e. the buildings and the most relevant technical system
information. A brief description of how the data was collected is provided below, while the above-mentioned
paper should be consulted for a description of the datasets.

The datasets were collected independently for six real buildings from different buildings in different countries
and climates. The data was acquired from energy meters, both consumption and PV generation, and sensors
of indoor climate variables, such as temperature, flow rate, relative humidity, CO:z level, and illuminance.
Weather variables, such as temperature, solar radiation and wind speed, were either acquired by local sen-
sors or obtained from a close by meteorological station.

Most data is raw data, although some variables in some datasets have been filtered, such as the indoor
temperature being the average of several sensors placed at different heights or different points. Two exper-
imental designs were used: longer observation periods (2 weeks to 2 months) with normal operation, and
shorter observation periods (ca. 1 week) with Pseudo-Random Binary Sequence (PRBS) experiments aimed
at exciting the thermal response of the building, when there was no occupation. The data has a time resolu-
tion varying between 1 min and 15 min; in some cases, the highest resolution data are also averaged at
larger intervals, up to 30 min.

This office building, built in the 1960s, has a concrete construction with a brick fagade; it has eight floors plus
a basement, with a total floor area of about 3,800 m2. The basement and 15t floor are laboratories and com-
mon areas. The 2" to 7t floors are office areas, a mix of cell offices and open-plan configurations, while the
8t floor consists of meeting rooms. A schematic of the building and its HYAC system is given in Figure 2.1.

19/59


https://data.mendeley.com/datasets/xztfbtsgys/3
https://doi.org/10.1016/j.dib.2023.109149

|
| dog |
= = i
= = | |
| IME— IR r— [m_| |
= = !
|MME—+_ _ _ [F— [mm_|
= T 1 = |
Mm—L [~ |
= T T = g I
COOE—F_ [
= T = I
[ mm|
_____ e e e
(T I |
= T h=E
- E |
= ;77771777777772777;' e DH central
= I
o O
q A b
Basement | _

Figure 2.1: Schematic of the building’s HVAC system.

The building's air handling unit (AHU) has a rotating wheel heat recovery unit and an electric reheating ele-
ment. During normal operation, the air volume flow is controlled by a daily schedule to 0%, 67% or 100%.
The supply air temperature is controlled by an extract air temperature compensation curve. The air is distrib-
uted and extracted to the different floors in one common shaft. In each shaft, the air is split into two branches,
covering the northern and southern parts of the building, respectively.

Except for the 1st and 8t floor, the room heating in the building is covered by a radiator system supplied by
district heating. The district heating substation is located in a nearby building, and the heat is transferred to
the central heating unit in the basement. From there it is split into two radiator circuits supplying the eastern
and western fagade. An outdoor temperature compensation curve controls the supply temperatures of the
radiator circuits, and the two circuits have individual outdoor temperature sensors. The radiators have no
thermostatic control, only manual control valves. This means that the outdoor temperature compensation
curve only controls the building's heat supply in a so-called weather-compensated control (WCC). Further
details on the building are available in Walnum et al. (2024).

During the Easter holiday, a pseudorandom binary signal (PRBS) experiment was performed on the building
to generate a rich dataset for model identification.

The experiments performed in this study were carried out in the ZEB Living Lab, a single-family, zero-emis-
sion house with a heated floor area of about 100 m2 on the Norwegian University of Science and Technology
(NTNU) campus in Trondheim. The building envelope has a wooden frame with mineral wool insulation
measuring 35—40 cm and a window-to-wall ratio of 0.23, or a glazing ratio of 0.14 (when the opaque window
panels and door frames are subtracted). More information on the envelope characteristics is provided in
Skeie (2022). Space heating can be floor heating, a central radiator, or air ventilation. The balanced mechan-
ical ventilation system is equipped with a heat recovery unit, and the additional ventilation heating battery
was disabled. By operating the doors in the building, four zones can be created (bedroom west, bedroom
east, bathroom, and living areas). The building and the internal layout of the Living Lab are shown in Figure
2.2
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Figure 2.2: (left) Exterior view of the ZEB Living Lab (right) Interior view with hydronic radiator and example of wall-
mounted sensor.

2.2.3 Dataset 3: FlexHouse, Denmark

FlexHouse is a part of the experimental distributed energy system (Syslab) at DTU campus. The building is
controlled by one central server, where, among other things, it is possible to record the temperature in each
room and implement control of the installed electrical heaters. Furthermore, a climate station is located right
next to the building; see Figure 2.3 Bacher and Madsen (2010) provide more details on the building and the
data.

Figure 2.3: (left) View from the south side of FlexHouse and (right) Floorplan: The green dots indicate the position of
the wall-mounted temperature measurements.

The data is from experiments carried out with the objective of estimating the building's thermal dynamics.
The designs of the experiments vary from conditions optimised for modelling to more common living condi-
tions, i.e., high variation of the indoor temperature, thermostatic temperature control and human activities in
the building.

2.2.4 Dataset 4: Varennes Library, Canada

The Varennes Net-Zero Energy library, completed in 2014, is the first net-zero institutional building in Canada
(Figure 2.4). This building is located in the town of Varennes, 30 km northeast of Montreal (ASHRAE Climate
Zone 6). It is a two-storey building with a floor area of about 2,100 m2. It comprises a large basement con-
taining the mechanical room and a mezzanine between the two floors. Both floors consist of mainly open
plans used primarily as library spaces, with some closed offices on the first floor.
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Figure 2.4: (a) Varennes Net-zero Energy Library exterior, (b) Varennes Net-zero Energy Library interior, (c) Plan high-
lighting areas supplementary served by a hydronic radiant concrete circuit, (d) Schematic of library and integrated en-
ergy systems (Dermardiros et al., 2019).

The library has a 110.5 kWp, roof-mounted, building-integrated photovoltaic (BIPV) array on the south-facing
section of the roof. From the total BIPV area (706m?) about 16% also incorporates thermal recovery from
where air is collected and used as pre-heated ventilation air during the heating season. The building’s heating
and cooling needs are covered by a geothermal system of 8 boreholes feeding four heat pumps with a ca-
pacity of 105 kW. Space heating and cooling are distributed by hydronic radiant slabs in the south, east and
west perimeter zones. The building is well instrumented, with hundreds of variables recorded in its BAS
located in its mechanical room. The data was collected under normal operation of the library for two consec-
utive months during the heating period.

2.2.5 Dataset 5: FLEXLAB, USA

FLEXLAB is a well-instrumented experimental test facility at Lawrence Berkeley National Laboratory in
Berkeley, California, United States (Figure 2.5). It has a modular and flexible design with options to modify
the building envelope, HVAC and lighting systems, indoor room arrangement etc. It consists of four testbeds,
each containing two identical rooms and allowing for a side-by-side comparison of a novel technology against
a baseline scenario.

The testbeds also have solar panels installed on the roof-top along with multiple Tesla Powerwall batteries.
With these technologies, FLEXLAB allows for accurate measurement and evaluation of the behaviour of
integrated systems (e.g., HVAC and batteries) in providing grid services (e.g. shift/shed load when requested)
and building services (e.g., visual and thermal comfort).

The data in this test was collected from testbed “XR,” which contains two identical and adjacent rooms (Room
CellA and Room CellB). Each represents a small commercial office space with a floor area of 57 m? and a
large south-facing window.
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Figure 2.5: (a) Outside view of FLEXLAB, (b) Mechanical drawing of FLEXLAB envelope and HVAC, top view, (c) 7.2
kWh local energy storage capacity with a peak output of 3.3 kW: only two of the three shown have been used in the
test (d) 3.64 kW local solar power generation (Touzani et al., 2021).

As part of this experiment, the HVAC system in FLEXLAB was reconfigured to be a single-zone variable-
capacity AHU that conditioned each room in the testbed. It had a single variable-speed fan and two dampers
for outdoor air and return air mixing. The water side of the two AHUs was served by a small chiller and boiler
shared by the two cells. Each room had six ceiling-mounted light fixtures, six plug-load stations (i.e., desks
with desktop computers), and six heat-generating mannequins that emulate occupants. The distributed en-
ergy resources on the testbed comprise a 3.64 kilowatt (kW) photovoltaic system and a Tesla Powerwall
battery storage, with a capacity of 7.2 kWh and a peak power output of 3.3 kW.

2.2.6 Dataset 6: Office space at Research Techno Plaza, Singapore

The testbed office is located at level 3 of Research Techno Plaza building on the campus of Nanyang Tech-
nological University, Singapore, as shown in Figure 2.6. The dataset contains time-series data of variables
in the heating, ventilation, and air conditioning (HVAC) system and room space.
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Figure 2.6: Overview of the testbed (a) Location of the testbed office in the test building, (b) internal setup of the
testbed office, (c) external view of the test building, and (d) internal view of the testbed office The testbed office has a
floor area of 46 m2, with a floor-to-ceiling height of 3 m, and is air-conditioned by a variable air volume (VAV) box. Fur-
ther description and details of the testbed office setup are given in (Yang et al., 2020).
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The mathematician George E.P. Box famously said: "we make tentative assumptions about the real world
which we know are false but which we believe may be useful nonetheless" (Box, 1976). This phrase, often
rendered as “all models are false, but some are useful”’, contains a profound truth: A model is meant to be a
simplified representation of reality, intended to target a specific purpose, such as gaining insight about a
phenomenon, informing project management, selecting a specific design or planning control decisions.

A critical challenge -arguably the main hurdle- for implementing data-driven MPC is the development of con-
trol-oriented models that are sufficiently accurate and reliable for the purpose at hand, but are also manage-
able within an optimisation routine (or at least allow a comparison of different control scenarios). Activity B2
focused on collecting and discussing different approaches to model creation contributed by the Annex par-
ticipants. These examples include diverse building types and climates, using both data from real buildings
and synthetic data from detailed simulations. Diverse control-oriented modelling approaches were used.

Chapter 3 is organized as follows: First, it discusses the most used approaches for the creation of MPC
models in Sections 3.2 through 3.5. Secondly, Section 3.6 briefly discusses the examples provided by the
Annex participants. Lastly, future steps and research opportunities for control-oriented models are discussed.

Modelling approaches are traditionally classified using the categories of "white-box," "grey-box," and "black-
box" models (Li et al., 2021). This classification is rather coarse, and it can only hint at the vast variety of
ways a mathematical model can be created starting from a dataset. Paraphrasing G.E.P. Box, we could say
that "all categorisations are false, but some are useful." This white-grey-black classification, limited as it is,
provides a practical primer on how a model can be deployed for control applications.

ihite-box Gray-box Black-box

Completely transparent. Middle-ground. Entirely data-driven.
Grounded in Blending physical Relies solely on
mathematical equations insights of the input-output data
detailing the building with without assuming
building's physical empirical data underlying physical
processes. analysis. processes. i
:[]i

Figure 3.1: White-box, gray-box and black-box models (image credit: Benedetto Grillone, https://benedettogrillone.sub-
stack.com)

As illustrated in Figure 3.1, a white-box model is based on parameters with clear physical meanings. The
equations rely on an aggregation of well-understood physical phenomena, such as energy balance equations
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at specific locations, heat transfer coefficient correlations, and radiative heat transfer models. Both the equa-
tions and their associated parameters are clearly and explicitly accessible. In buildings, white-box models
refer to models created using building performance simulation tools: EnergyPlus, TRNSYS, Modelica, among
others. White-box models have several advantages: interpretability, extrapolation under unusual or unfore-
seen situations and incorporation of novel technologies. Therefore, a white-box model can play the role of a
"digital twin" in the sense of closely reproducing a building's behaviour in real time for decision-making.

In the context of our discussion on "data-driven" approaches, white-box models can also be calibrated with
real measurements: temperatures, flow rates, electric power measurements, etc. After fine-tuning it with real
data, a reliable and accurate white-box model is a powerful tool for assessing control strategies under differ-
ent scenarios.

A white-box model specifically created to mimic a particular building configuration as closely as possible to
reality is called an "emulator."” This kind of model, arguably the next best thing to an actual building, enables
testing and evaluating control strategies under a "level playing field." This report discusses such an approach
in Section 4, in which emulators developed for the BOPTEST environment enable the comparison of control
strategies.

White-box models may also be used as control-oriented models within an MPC controller. However, control-
oriented models tend to be simpler grey-box or black-box models, with fewer input variables and a reduced
number of parameters.

In contrast with white-box models, black-box models describe mathematical relationships between a set of
inputs and outputs. They are purely data-reliant, and their parameters do not have an explicit physical mean-
ing. There is a wide variety of black-box modelling approaches. Here are just a few examples:

¢ Linear regressions (Bunning et al., 2021; Ciulla & D’Amico, 2019) and non-linear regressions.
The oldest black-box modelling approach, the least squares method, was created in the 18™ century.
It involves finding the coefficients of a function (which can be either a linear or non-linear function of
the inputs) that will minimise the difference (typically measured using the mean square error as a
parameter) between predicted values and measured output variables. For a linear regression, the
basic equation is:

y:ﬂ0+ﬂ1xl+ﬂ2x2+ﬂ3x3+"'+ﬂn‘xﬂ+g (3.1)

Where the output is a linear function of inputs (x1, X2... xn). In the case of a non-linear regression, the
general equation is:

y=[(x,0)+¢ (3.2)

In this case, a set of parameters 0 is used to predict the output y based on a vector of inputs x.
e Time-series methods (Deb et al., 2017; Zhuang et al., 2023). Time-series models are a mathemat-
ical framework in which the output variable depends on past values of the output variable collected

at regular intervals (autoregressive model) and on present and past values of input variables (exog-
enous variables). For example, an autoregressive exogenous (ARX) model has the form:

Vi=ay,t @Y, ay, st Bx, + BX X, (3.3)

Many other schemes exist, such as autoregressive models (AR), autoregressive integrated moving
average models (ARIMA), etc. Time-series models share some similarities with linear regressions,
but they implicitly embed information about time delays. They can be derived from physical models
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(e.g., grey-box models), or they can be obtained by applying system identification techniques to
calibrate the values of the coefficients in the models.

e Machine learning methods include decision trees (Yu et al., 2010), neural network models (Afram
et al., 2017; Macarulla et al., 2017), support vector machines (Dong et al., 2005), Gaussian process
régressions (Maddalena et al., 2022), gradient boosting models (Miller et al., 2020), etc.

e Deep learning methods (LeCun et al., 2015) : recurrent neural networks (Fan et al., 2019), long
short-term memory (LSTM) networks (Mtibaa et al., 2020).

Black-box models are a popular option for implementing predictive control, especially within the building
operation industry. They can be rapidly deployed, require less expertise about building systems, and they
can achieve a high degree of accuracy. However, black-box models also have shortcomings: they require a
significant amount of high-quality data for their creation, some expertise and skill is required in selecting
appropriate input variables, and they lack extrapolation capability.

A grey-box model represents a sort of compromise between a white-box and a black-box model. While it
does not include as many details as a white-box model, its parameters still retain physical meaning, typically
as "effective" or “equivalent” values. Moreover, unlike white-box models, where parameters are derived from
physical properties or the building’s geometry, a grey-box model's parameters are calibrated from collected
data, akin to a black-box model.

The classic grey-box model (albeit not the only one) is a thermal RC network, or resistive-capacitive network.
Figure 3.2 shows an example of an RC network for a small building (e.g., a small commercial building or a
house). The nodes 1, 2 and 3 represent respectively the temperatures of the indoor air, the inner walls and
floors and the building envelope. The thermal capacitances represent the effective energy storage capacity
of these components, and the resistances represent the effective thermal resistance between them, including
the resistance between specific nodes and the outdoor air. For instance, Riext represents the equivalent
thermal resistance between the indoor air and the ambient air (this kind of direct link can be the result of
infiltration and heat loss through the fenestration). Qse, Qic and Qreating respectively represent the thermal
contributions of solar gains, internal gains and the heating system.

In this case, the RC network in Figure 3.2 is a “third order” network, as each capacitance defines a differential
equation. The actual value of these parameters (e.g., the resistances in K/W or the capacitances in MJ/K)
may be calibrated by collecting data from a real system.
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Figure 3.2. Example of grey-box model: RC representation of a simple building.
A keen observer might point out that the model structure is somewhat arbitrary, and that other parameters
could have been included. This is a valid point—there is indeed an element of subjectivity in defining this RC

network. However, it is important to remember that the primary objective of this type of model is to offer a
simplified representation that supports decision-making.
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Grey-box models must be structural-identifiable (Madsen et al., 2006). This implies that depending on the
number of input and output variables, the structural complexity must be balanced, and the number of differ-
ential equations must be limited to the most important. Some work has been carried out to create generic
archetypes capable of representing typical configurations (Candanedo et al., 2022).

The heat balance in each of the nodes with capacitances may be described by ordinary differential equations.
For instance, the heat balance in node 1 in Figure 3.2 can be written as follows:

dT, T,

ext

- LT,
Rl 2

‘1 E R QIG + Qheating (34)

1,ext

In this equation, the parameters C1, Riext, and R12 (which loosely stand for the thermal energy stored in the
indoor space or thermal resistance between specific areas) can be calibrated using collected data. In general,
the grey-box framework bridges the gap between models based on first principles (white-box models) and
models based solely on data (black-box models), as shown schematically in Figure 3.3. Boundaries between
modelling approaches can be blurry, depending on the model's parameterisation level, and how these pa-
rameters can be interpreted as representations of physical phenomena. As discussed in a paper on the
identification of control-oriented models, there can be numerous “shades of grey” (Leprince et al., 2022).

White Grey Black
Physics-based Data-based
* Deterministic equations Stochastic models
» Detailed submodels Physics Simple models
* Parameter calibration — Parameter calibration
often problematic easier

* Parameter: physics Parameter: black

Figure 3.3: Grey-box modelling bridges the gap between white- and black-box modelling.

Characterising uncertainty stemming from sensors, model approximations, and unrecognised disturbances
is essential for implementing sensor-driven and real-time controllers. Grey-box models provide a useful
framework for handling such uncertainties, as they can be formulated as SDEs (sfochastic differential equa-
tions, i.e., differential equations that incorporate randomness). When the models are also formulated as
SDEs, information from sensors can be assimilated into the model parameters in almost real-time. Conse-
quently, the information obtained from sensors can be used to update the predictions and, consequently, for
making better control decisions.

A grey-box model, as illustrated in Figure 3.3, provides a link between white-box models and black-box mod-
els. Grey-box models, which may be represented with resistive-capacitive networks, are typically formulated
as state-space models, where the dynamics of the states are described in continuous time by a set of sto-
chastic differential equations (SDEs) (system equations).

A grey-box model may be formulated as a continuous-discrete time stochastic state space model in the form:

dx(t) = f(x(0),u(),d (0),0)dt + g (x(2),u(t),d (t),1)dw(r) (3.5)
Drift (deterministic component) Diffusion (random component)
Yy =h(x(t,))+v, v, UN(O,R)) (3.6)
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In Equation 3.5, which describes the evolution of the states:
e x is the system vector (describing the states, e.g., temperatures)
e u and d are, respectively, the inputs and disturbances
e @ is a standard Wiener process (also called a Brownian motion)
e fand g are the drift and diffusion functions, respectively

The drift function is the deterministic part of the SDE. The diffusion function describes all the system-related
uncertainties that the drift function does not adequately describe.

Equation 3.6 describes how discrete-time observations are related to the states, by a set of observation
functions, which are static equations (i.e., without time-dependence), where:

e yiare the observed outputs,

e his the observation function

e Vi is the observation noise

Modelling physical systems using SDEs provides a natural method to represent the phenomenon as it
evolves in continuous time'. The methodologies for readily handling uncertainty from sensors and other
sources are one of the benefits of grey-box modelling when using stochastic differential equations. There are
many reasons for introducing the system noise (the diffusion term):

o Modelling approximations. The dynamics, as described by the drift term, are necessarily an approx-
imation of reality.

e Unrecognised and un-modelled inputs. These include variables which are not considered, such as
wind speed, may affect the system.

o Noise in measurements of input variables: the measured input signals are regarded as the actual
input to the system, and the deviation from the true input is described by the noise term.

In the observation equation, a noise term is also introduced. The reason for this noise term is:

e Noise in measurements of output variables. The sensors that measure the output signals are af-
fected by noise and drift.

It can be reasonably assumed that the system and measurement noise are independent.

In Madsen and Holst (1995), a simple second-order grey-box model for the thermal dynamics of a building
using the so-called RC-formulation is used. The thermal capacity is lumped into two states, and each of these
states has an associated thermal mass. The states of the model are given by the temperature Tm of the
dominant heat accumulating medium, and by the temperature Ti of the room air and possibly the inner part
of the walls. This model has been identified in (Madsen & Holst, 1995). It is concluded that for the considered
building, this second-order model provides a good description of all the variations in the data since the resid-
uals are white noise; this paper describes how the parameters are estimated using a Maximum Likelihood
method.

More recently, Thilker et al. (2021a) estimated an SDE-based model for a building using a water-based
heating system with radiators to distribute the heat. The nonlinearities arise from the varying water flow and
the radiator thermostats. Hou et al. (2022a) presents a nonlinear grey-box model and MPC of a university
building in Norway. They also model the varying mass flow of the air and water.

" In a continuous-time formulation, variables evolve continuously over time and are described by differential equations. Discrete-time
formulations describe how the system changes at successive time steps and are described by difference equations.
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A linear, fourth-order RC model is identified and estimated in Zhang et al. (2022), where the system has an
on-site battery with a distributed PV system. The sensitivity of grey-box model parameter estimates have
been studied in Brastein et al. (2018). Here, they identify and estimate grey-box models for a small wooden
building and find that the parameter estimates are robust towards initial conditions. An automated and scal-
able method for stochastic grey-box model identification of building heat dynamics is suggested by Leprince
et al. (2022a). The method is implemented on 247 Dutch residential buildings Leprince et al. (2022b). This
method was used by Vallianos et al. (2024) for the estimation of the model parameters for 60,000 homes in
the USA and Canada.

Continuous-time models have many strengths concerning control:

e They describe the state-evolution of the system continuously. This is compared to discrete-time
methods where the system state between samples is unknown.

e For control, continuous-time models are very flexible and can be used in many setups. First off, they
allow operators to use controllers that minimises integral-cost functions. Secondly, continuous-time
models can be discretised with arbitrary time samples to fit into any discretisation.

e Itis important to emphasise that the physical interpretability of the grey-box models is essential in a
control perspective, as it enhances their ability to extrapolate beyond the training data (which is par-
amount for control).

3.3 MPC Test Cases

To gain insight into the various approaches used to create predictive models for control applications, Subtask
B participants contributed their different modelling approaches to different case studies. Table 3.1 summa-
rises the different approaches, which respond to factors such as data availability, the need or not to gener-
alise results, the incorporation of uncertainty, and familiarity with different modelling tools. The MPC projects
compiled in Table 3.1 contain a wide array of control-oriented modelling approaches.

Table 3.1: Control-oriented modelling approaches by Annex 81 participants.

Varennes Library NZEB with PV panels, Detailed grey-box models Concordia University =~ Canada

geothermal heat /CanmetENERGY-

pumps, radiant floor Varennes
Low energy MPC of PCM-based Grey-box University of Denmark
building ventilation cooling Southern Denmark
Office building in  Office at Level # 3, Black-Box (ANN) Nanyang Singapore
a tropical climate research building in a Technological

tropical country University
Small office Energy forecasting Black-box model with Drexel University USA
building model for whole Energy+ as virtual testbed

building
Large hospital HVAC plant with Hybrid: white-box for CSIRO Australia
central cooling thermal and electrical equipment, grey-box for
plant chillers building and storage, black-

box forecasting model

Sol4City, Local control of room Grey-box with white-box for AEE-INTEC Austria
EXCESS thermostats and valve synthetic data

positions
Office-like test Rule-based control White-box model using co- University College UK

facility

algorithm for adaptive
building envelope

simulation

London (UCL), other
institution
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Varennes Library, Canada. The Varennes Net-Zero Energy Library is a 2,100 m? building located in
Varennes, Québec, Canada, approximately 30 km northeast of Montreal (Jalilov, 2021). Opened in 2014, it
was designed the first net-zero institutional building in Canada, featuring a building-integrated photovoltaic
thermal (BIPV/T) roof with a nominal electrical capacity exceeding 110 kW. Other features include 10 geo-
thermal heat pumps, displacement ventilation and a carefully planned passive solar design. A detailed (10t
order) grey-box RC thermal network was used to model an MPC strategy.

Small office building, USA. This is a 511 m? virtual building developed by NREL (National Renewable
Energy Laboratory) in the USA. The virtual testbed was developed in EnergyPlus. The primary goal of the
overall MPC is to reduce the building's total electricity costs over a forecasting horizon while ensuring thermal
comfort by keeping the zone temperature within an acceptable range. The MPC strategy for this building
uses a black-box model, which focuses on generating short-term electricity forecasts for the entire building
using Multivariate Adaptive Regression Splines (MARS) (Zhang and Wen, 2019).

Echuca Hospital, Australia. This case study, which focuses on the largest building among the case studies
considered, focuses on the cooling plant of a hospital (Heidari et al., 2024). This cooling plant includes a 4
MW chiller which provides the cold water for the air handling units distributed in the hospital. This case study
includes an active thermal storage system includes cold water storage tanks that can be operated in charge,
discharge, or standby modes; cooling towers that remove heat from the building's return water stream; and
two solar thermal fields supplying thermal energy to drive two absorption chillers in the chiller plant. In this
case, the MPC strategy applied a combination of modelling approaches: a white-box model for the chiller,
complemented with operational data provided by the manufacturer, grey-box models for most of the equip-
ment, and black-box models to forecast cooling load and solar thermal generation.

Low-Energy Building, Denmark. This building, denominated OU44, is an 8,500 m? teaching building lo-
cated at Odense, in the University of Southern Denmark (Clausen et al., 2021). Some features of this building
include a ventilation system with embedded phase change material. In the context of an MPC study, a virtual
testbed was developed in the Modelica language, within the Dymola platform. To implement the MPC formu-
lation, a grey-box model (RC network) was used. The calibration of the model was carried out using Mod-
estPy. Training data included ambient air temperature, PCM temperature, damper position, valve positions,
etc.

Dynamic building envelope in testing facility (MATELab), UK. This case study focused on a dynamic
facade installed in a 30-m? office-like facility located in Cambridge, UK (Borkowski, 2021; Luna-Navarro et
al.,, 2022). The south, east and west facades of this facility consist of modular components, which enable
testing different glazing configurations. In this case study, the south-facing envelope consisted of two high-
performance double-glazed units, and automated venetian blinds installed internally. In this case, a white-
box model was used to model the impact of the fagade on the test facility. For this purpose, this study used
EnergyPlus for the building itself, a Modelica (Dymola) control algorithm, and the functional mock-up interface
standard to exchange information between Dymola and EnergyPlus.

Office building in a tropical climate, Singapore. The test setup is an office located on the third floor of the
Research Techno Plaza building at Nanyang Technological University in Singapore, covering 46 m? with a
height of 3 m, equipped with eleven desks, a meeting table, and eight manually operated LED light fixtures
(Yang et al., 2020). Climate control is handled by a ceiling-mounted VAV box with a 1320 m3/h capacity,
connected to an external fan coil unit that also serves nearby spaces, with a thermostat set to maintain 23°C
during weekday working hours. Sensors in the supply duct and office area monitor air temperature and hu-
midity in real-time, transmitting data to the control system, while a thermal comfort station near the meeting
table collects data for offline analysis. In this case, a black box model (a recurrent neural network) is used to
predict the indoor temperature of the office within an MPC approach targeting the real-time control of the
cooling power supplied into the office. The RNN is continuously updated during real-time control.

Sol4City/[EXCEES Projects, Austria. These projects focused on the application of MPC concepts to several
net-zero and net-positive residential buildings incorporating solar energy (Putz et al., 2023). The buildings
were simulated within an emulator created in the IDA-ICE software tool. The objective of the MPC model was
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to maximise the use of local solar generators (photovoltaic, photovoltaic thermal and solar thermal genera-
tors). Considering the diversity of buildings, both grey-box models (2"-order RC thermal networks as the
basic models, with additional nodes as per each case) and black-box models (ARX time series were used).
The models and the controllers were created with the GEKKO tool, a Python optimisation package (Beal et
al., 2018).

This chapter has briefly presented and discussed some methods used in building modelling and the model-
ling of building sections aimed at predictive control applications. The traditional classification of models into
"white-box," "black-box," and "grey-box" categories was introduced. Each of these methods has its ad-
vantages and disadvantages. Generally, "grey-box" and "black-box" models, by their very nature, allow for a
more immediate calibration of their parameters through data collection. That said, "white-box" models more
easily facilitate the handling of new technologies or specific cases for which sufficient data has not yet been
gathered.

A particular advantage of "grey-box" models is their ability to easily incorporate the treatment of uncertainty—
be it in predictions, parameters, or the inevitable limitations that come with developing a mathematical model.
Since a "perfect" model for control applications is simply unattainable, the ability not only to tolerate but even
to embrace uncertainty allows for the rapid implementation of MPC in real buildings, as will be discussed in
Chapter 4.

The examples presented by participants in Annex 81 are very diverse in nature, including real buildings or
high-fidelity emulators, and range from small experimental buildings to large institutional or commercial build-
ings, and dealt with the control of different technologies (chillers, dynamic fagades, heat pumps, etc.). "Grey-
box" or "hybrid" models have been predominantly used by the researchers participating in Annex 81. It is
worth noting that most Annex participants are researchers from government agencies or academic institu-
tions. Information about the modelling approaches used in the commercial sector is limited due to confiden-
tiality.

The case studies presented by the participants indicate that the most common practice for creating a "con-
trol-oriented" model remains addressing each case individually. Given the vast diversity of existing build-
ings and the near limitless variety of mechanical configurations, technologies, and building types to ad-
dress, the large-scale deployment of data-driven MPC remains an outstanding challenge. However, the
standardization of data structures and collection, combined with well-defined control practices and the se-
lection of models suited to the specific task (specifically, determining the optimal control action over a de-
fined horizon) will progressively simplify the development of control-oriented models grounded in real-world
system data and facilitate the large-scale implementation of MPC solutions.
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IEA Annex 81 presented an opportunity to gather an international community of data-driven control experts
and developers to compare closed-loop performance of various data-driven control approaches proposed by
each participant. Activity B3 focused on simulation-based performance evaluation, where data-driven con-
trollers are tested against high-fidelity simulation models of building HVAC systems meant to stand in for real
buildings. Such models are also known as building emulators. This approach is common in the literature
and has been chosen over tests in actual buildings since simulations can be run faster than real time, are
more flexible in the definition of the building, system, and data access, and have completely controllable and
replicable operating conditions. At the same time, recent developments in simulation technology have al-
lowed for significantly improved opportunities for simulation models to represent real buildings realistically.

Two prominent categories of data-driven control strategies explored within Activity B3 are Model Predictive
Control (MPC) and Reinforcement Learning (RL). Though recently brought into more focus, MPC has been
studied for many decades in the context of building control, dating back to initial work in the early 1990s
within mechanical and process engineering communities. RL is a relatively newer approach, especially in
building control, focusing on machine learning techniques developed mainly within data and computer sci-
ence communities. There exist differences between MPC and RL approaches, and there also exist further
differences between specific implementations of each regarding modelling approaches, algorithm choices,
and related additional tuning of each of the components of the approaches. Meanwhile, researchers have
contributed numerous studies demonstrating the value and advantages of various approaches over chosen
baselines to compare against, with comparative baselines often being conventional rule-based control.
Though valuable in their own right for identifying promising approaches, individualised case studies are diffi-
cult to compare and contrast in broader contexts that would identify overarching conclusions of advantages
and disadvantages of approaches and variations for given applications or conditions. Such conclusions are
key to reducing the risk for industry adoption and owner investment and guiding continued development

This Section presents the activities of B3 participants in their evaluation of data-driven control strategies in a
closed-loop environment and efforts to draw conclusions or observe trends, where possible, about the per-
formance of the various control strategies employed. The rest of the report is structured as follows. Section
4.3 overviews methods used within the B3 studies. Next, Section 4.4 summarises five studies undertaken
and their key results. Section 4.5 presents results that are comparable across studies. Finally, Section 4.6
summarises the conclusions of B3 and describes the needs for future work.

To make results generated by one Annex participant comparable to another, and to enable such results to
be continually used as baselines for future studies, a test environment is required that separates the virtual
building simulation (emulator) and KPI generation from the controller under test, to isolate any change in
building and KPI results such that they can be attributed only to the controller under test. A visualisation of
such a test environment is shown in Figure 4.1 below.
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Figure 4.1: Elements of a test environment for benchmarking control performance.

Note that the test environment encapsulates the building simulation model with any boundary condition data
and parameters needed to run the model, along with the simulation software and solvers needed to integrate
the simulation model through time. The test environment also uses data generated by the simulation model
and the necessary software to calculate KPIls unambiguously concerning the user or test controller. Finally,
the environment has an API which the user can use to manage tests and input/output data between the test
controller and building simulation model.

The environment depicted in Figure 4.1 has been developed as the Building Optimisation Testing Framework
(BOPTEST), described in detail in Blum et al. (2021). See also the homepage at https://boptest.net.
BOPTEST consists of a rapidly deployable and accessible run-time environment (RTE), based in Python and
packaged and deployed using Docker, that supports simulating building simulation models in the form of
Functional Mockup Units (FMU), calculating KPIs using stored simulation data, and exposing a RESTful
HTTP API for users to manage simulations, report KPls, and interact with the simulated building using a test
controller using input/output data. The API also enables predictive controllers to retrieve forecasts of bound-
ary conditions (e.g. weather and electricity prices) and users to retrieve a history of measurement and control
data trajectories.

BOPTEST also makes building simulation models (emulators) publicly available. These emulators (denom-
inated test cases) are high-fidelity models written in Modelica and using open-source Modelica libraries ex-
tending from the Modelica IBPSA Library (https://github.com/ibpsa/modelica-ibpsa), such as Modelica Build-
ings Library (Wetter et al., 2014) and IDEAS (Jorissen et al., 2018). Test cases may also use Spawn (Wetter
et al., 2024) to integrate envelope models written for EnergyPlus with HYAC and control models written in
Modelica. Note that BOPTEST uses Modelica-based HVAC and control simulation so that the HVAC and
control dynamics are represented explicitly, making the virtual buildings, and associated input/output behav-
iour, perform as close to the real world as possible.

Each test case contains embedded baseline control, so that test controllers can overwrite any subset of
control signals at the supervisor or actuator levels. BOPTEST currently offers a selection of seven publicly
available test case emulators. Additional development of framework capabilities and new test cases are on-
going within IBPSA Project 2. For more information, see https://ibpsa.qgithub.io/project1-boptest/ibpsalin-
dex.html.

This study implemented a three-state linear RC model as a control-oriented model in an MPC framework.
The principal layout of the control model is shown in Figure 4.2 below. A more detailed description of the
MPC implementation is provided by Walnum et al. (2020).
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Figure 4.2: The three-state linear RC model used in the MPC framework, as described in Walnum et al. (2020).

To assess the MPC framework's performance and scalability across various building types, it was tested on
two BOPTEST cases:

e bestest_hydronic_heat pump

e singlezone_commercial_hydronic

The bestest _hydronic_heat pump test case is a single-zone residential radiant floor heating system served
by an air-to-water heat pump. In contrast, the singlezone_commercial_hydronic test case is a single-zone
approximation of a commercial office building with radiator heating and a ventilation system delivering outside
air. More details about these test cases can be found on the BOPTEST home page.

In both cases, room temperature setpoint is the control variable, as it is commonly accessible in commercial
heating systems. The implementation approach is nearly identical: models are trained on one month of base-
line operation data (excluding test periods), using only forecasts of outdoor air temperature and global hori-
zontal solar radiation, as these inputs are typically available in real buildings.

For the singlezone _commercial_hydronic case, ventilation is excluded from the MPC formulation. In both
setups, the MPC algorithm determines the optimal heat flow into the building, which is then “translated” into
a temperature setpoint. This conversion is tuned separately for each case due to the slower thermal response
of the radiant floor system compared to the radiator system. This conversion must be tuned slightly differently
for the two applications, as the floor heating system in the bestest heat pump_hydronic test case reacts
much slower than the radiator system in the singlezone_commercial_hydronic test case.

For each test case, the controllers were evaluated using BOPTEST’s predefined two-week heating scenarios
(typical_heat_day and peak_heat_day) along with all three predefined pricing schemes: constant, dynamic,
and highly dynamic. The MPC setup was tested using both 15-minute and 1-hour control intervals.

Overall, the results indicate that MPC outperforms the baseline BOPTEST controllers, with the 15-minute
control step yielding better KPI performance than the 1-hour step. However, a closer look (especially for the
bestest_hydronic_heat_pump test case) reveals that the 15-minute control step leads to significant oscilla-
tions in the setpoints, which may increase wear on the equipment. Directly controlling the compressor speed
could probably reduce the oscillation effect. However, this is typically unavailable in commercial heat pumps,
or one could risk breaching the manufacturer's warranty. A key functionality of predictive controllers is their
ability to adapt to variable prices by shifting loads in time. However, price variability in the test cases is too
limited to assess this effect.

Deep Reinforcement Learning (RL) and Model Predictive Control (MPC) are widely employed optimisation-
based control strategies for enhancing building energy performance. Numerous studies have investigated
the control performance of RL and MPC individually, but comparing their performance directly is challenging
due to the absence of studies conducted in the same environment. This study, detailed in Wang et al., 2023,
implemented RL and MPC controls and compared their performance with traditional rule-based controls us-
ing closed-loop simulation with the BOPTEST bestest hydronic_heat pump test case under the
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typical_heat day and peak_heat day time-period scenarios, and highly dynamic pricing scenario. This ap-
proach allowed for a fair comparison between RL and MPC.

Three widely used RL algorithms, Deep Deterministic Policy Gradient (DDPG), Dueling Deep Q-Networks
(DDQN), and Soft Actor-Critic (SAC), were used to develop the RL controllers. Given DRL’s sensitivity to
hyperparameter choices, we performed thorough tuning using Optuna.

The MPC controller was developed using a reduced-order (1R1C) thermal RC network model for the building
envelope and a regression-based heat pump performance model. The MPC controller was implemented
using a 12-hour prediction horizon and a 60-minute control step. The building envelope and heat pump mod-
els are trained using a two-week dataset of normal operational conditions under the control of the baseline
controller and outside the control test period. Given the data-intensive nature of training a DRL agent, we
employed an extended training period where the DRL agent interacted with BOPTEST throughout the heating
period, excluding the two control testing periods.

The performance of DRL and MPC controllers is evaluated in terms of control effectiveness, data efficiency,
implementation effort, and computational requirements. All RL agents outperformed the baseline controller
in the peak heat day scenario, but only DDPG surpassed the baseline in the typical _heat day scenario.
Specifically, the DDPG agent exhibited a 92% reduction in thermal discomfort2 and an 11% operational cost
saving during the peak_heat_day scenario, and an 18% reduction in thermal discomfort and a 14% cost
saving during the typical _heat_day scenario. The MPC controller outperformed the baseline controller with
a 99.8% reduction in discomfort and a 21.9% cost saving in the peak _heat day scenario, and a 12% reduc-
tion in discomfort and a 26.6% cost saving in the typical_heat day scenario.

Comparing the MPC with the best-performing RL controller (DDPG), the MPC demonstrated superior perfor-
mance. During the peak_heat_day scenario, the MPC nearly eliminated thermal discomfort and achieved a
12% electricity cost saving compared to the RL controller. During the typical _heat day scenario, the MPC
achieved a 14% electricity cost saving but resulted in an 8% higher thermal discomfort. These findings indi-
cate that the model-based approach of MPC is more effective in identifying an optimal solution than the
model-free approach of RL (DDPG). Regarding computational demands, the RL and MPC controllers re-
quired higher online computational resources than the baseline controller. The RL controller necessitated
more computational resources during offline training, while the MPC controller required higher online com-
putational demand for real-time optimisation at each control time step.

Future research endeavours should focus on comparing advanced controllers in real buildings, considering
the challenges posed by insufficient operational data for training RL controllers, as well as the uncertainties
associated with measurement and disturbance forecasts for both RL and MPC controllers.

Implementing MPC at scale is difficult due to the high cost of modelling. To address this, Mostafavi et al.
(2023) propose using machine learning and automatic differentiation (an efficient method for computing de-
rivatives) to formulate and solve nonlinear HYAC MPC problems in buildings, enhancing scalability and ro-
bustness. The study tests this approach on two BOPTEST cases: the complex multizone_office_simple_air
scenario (a 5-zone VAV system with terminal box reheat) and the simpler bestest_air case (a single-zone
fan coil unit system).

For surrogate modelling (i.e. simplified models used in place of more detailed models, typically used to facil-
itate the implementation of model-based control strategies)3, PyTorch was used to implement and evaluate
three architectures: Linear, Multilayer Perceptron (MLP), and Long Short-Term Memory (LSTM) models (Ta-
ble 4.1). To ensure robustness and accuracy, a train-validation-test split was adopted. The validation set was
used to tune the models during training, while the test set assessed final performance on unseen data.

2 Thermal discomfort quantifies the total deviation of the zone's operative temperature beyond the defined comfort limits (upper and
lower) over a specified period, expressed in degree-hours (K-h).
% In this context, surrogate models play the role of control-oriented models, facilitating the formulation of optimisation problems.
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Training data was generated by sampling random control inputs at each time step and passing them to the
BOPTEST simulation, which returned the resulting observations and disturbances. In other words, data from
a detailed model (BOPTEST emulators) was used to train the surrogate (i.e., control-oriented) models. This
process was repeated over multiple trajectories with varying initial conditions.

e Inthe bestest_air case, 120 trajectories of 500 time steps (15-minute intervals) were generated, with
100 used for training, 10 for validation, and 10 for testing.

e In the multizone_office_simple_air case, 600 trajectories of 1000 time steps were generated, with
500 for training, 50 for validation, and 50 for testing.

Table 4.1: Mean Squared Error (MSE) for different model choices in the zone temperature bestest_air test case (Mo-
stafavi et al., 2023).

Linear 699.5 566.8 780.3
MLP 8.846 12.70 17.56
LSTM 1.418 1.726 2.145

Nonlinear MPC problems were formulated as receding-horizon controllers with a 10-step (15-minute) look-
ahead, computing setpoints for low-level HYAC control loops. Optimisation was performed using Sequential
Quadratic Programming (SQP) and Gradient Descent Methods (GDM). SQP followed Dieter Kraft's imple-
mentation in SciPy, using a quasi-Newton approach with automatic differentiation for function and Jacobian
evaluations. The GDM involved updating decision variables iteratively, using projected gradient descent for
input constraints. This framework ensured efficient, accurate optimisation, enabling effective HVAC control
while meeting all constraints.

Performance was evaluated over two one-week long periods (January 4-11 and August 7-14). In the single-
zone case, LSTM models yielded the best results; in the multi-zone case, MLP models performed better,
illustrating the trade-off between model complexity and accuracy.

This approach (i.e. obtaining surrogate models from the emulators) successfully reduced cooling and heating
loads while maintaining occupant comfort. It is adaptable to various models and control algorithms, providing
a robust solution for real-world applications. For the two weeks, the KPIs focused on total energy use, thermal
discomfort, and MPC computation time (MacBook Pro 2017, 16GB RAM) across different model and solver
combinations. Table 4.2 below summarizes the results. Discomfort is given in terms of Kelvin-hours (Kh).

Table 4.2: KPIs for bestest_air (single-zone) and multizone_office_simple_air (multi-zone) test cases, with testing peri-
ods from January 4 to January 11 and August 7 to August 14 (Mostafavi et al., 2023).

Single-zone Linear GDM 0.0189 1.607 1556
Single-zone Linear SLSQP 0.2551 0.933 1528
Single-zone MLP GDM 4.804 1.694 2.935
Single-zone MLP SLSQP 5.059 1.684 5.207
Single-zone LSTM GDM 4.818 0.620 2.081
Single-zone LSTM SLSQP 4.943 0.661 4.415
Multi-zone Linear GDM 2.807 1.504 10.44
Multi-zone Linear SLSQP 2.487 1.600 11.40
Multi-zone MLP GDM 3.458 1.782 4.054
Multi-zone MLP SLSQP 2,778 2.144 3.154
Multi-zone LSTM GDM 2.222 0.570 124.7
Multi-zone LSTM SLSQP 2.880 0.818 35.48
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This study demonstrated that accurate ML models can be derived from building emulators, though data gen-
eration remains challenging, particularly for complex systems. Additionally, automatic differentiation can sig-
nificantly streamline the formulation process, allowing for more efficient and generalised solutions without
custom designs. Results indicate that model complexity can affect control performance, and predictive accu-
racy should not be the only metric.

Achieving practical MPC necessitates further tests and improved control formulations. Future research will
explore fast solvers and alternative control formulations, collaborating with BOPTEST developers to control
scaled-up models, including multiple buildings and incorporating robust sampling procedures for data gener-
ation. The ultimate goal is to develop scalable, robust predictive control methods.

This study (a two-part study) investigates the impact of time series prediction results on MPC and RL control
algorithms. For MPC, the effectiveness of optimising control strategies is highly dependent on the accuracy
of the prediction model. However, any prediction model inherently contains uncertainties.

Uncertainty propagation. The first research objective of this study is to explore how the MPC algorithm can
effectively mitigate the impact of prediction uncertainties to produce more robust operational strategies. To-
wards this end, using a first-order thermal RC network grey-box model (1R1C), a “tube-based”* MPC algo-
rithm was used to compare the optimisation results under prediction uncertainty for a single peak heating
day in the BOPTEST bestest _air test case (this test case represents a single-zone FCU system where hot
water is supplied by a boiler and chilled water by a chiller). Since HVAC prediction accuracy declines over
time, we modified the tube-based MPC algorithm to let the uncertainty space gradually expand along the
prediction horizon. This better captures the accumulation of errors and ensures more robust and realistic
control. Compared to traditional MPC approaches, the tube-based MPC can reduce operational costs by up
to 42.6% and 48.8% under outdoor temperature prediction errors of 10% to 20%, while achieving better
indoor temperature control performance. However, each MPC demonstrated issues with maintaining the
indoor temperature set point, which should be considered further. More details about this study can be found
in (Gao et al., 2023).

Forecast information into RL training. The second research objective focuses on how forecast information
can be integrated into reinforcement learning (RL) to improve control performance. In this context, an RL
agent learns to make decisions, such as when to heat or cool, based on the system's current state. This
study examines whether adding predictive information about future conditions to the agent’s state vector can
support more effective decision-making. The Soft Actor-Critic (SAC) algorithm, which applies the maximum
entropy principle to promote exploration and avoid local optima, served as the foundation. Modifications in-
cluded replacing more common neural network techniques with recurrent neural networks (RNN), specifi-
cally, Gated Recurrent Units (GRUS), and incorporating forecast data into the state representation. The en-
hanced RL configuration was evaluated against the traditional SAC setup across four BOPTEST bestest_air
scenarios: peak_heat_day, typical_heat _day, peak_cool_day, and typical_cool_day. Results show that inte-
grating RNN with forecast inputs in a DRL formulation can improve thermal comfort by up to 46% and reduce
operational costs by as much as 20%. Gao et al. (2024) provide additional details.

Both model predictive control (MPC) and deep reinforcement learning control (DRL) have been presented
as pathways to approximate the true optimality of a dynamic programming formulation®. These two methods
have shown significant operational cost-saving potential for building energy systems. However, thorough
quantitative evaluations of their closeness to true optimality are still limited, especially in the building sector.

4 Tube-based MPC is a robust control approach that accounts for uncertainty in future system inputs or disturbances by maintaining
the predicted state trajectories within a bounded “tube” (allowable deviations) around a nominal trajectory over the prediction horizon
5 Dynamic programming, based on Bellman’s equation, guarantees global optimality under certain conditions, such as full knowledge
of the system and a discrete set of possible actions.
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To address this research gap, this study, detailed in (Fu et al., 2023), developed a containerised framework (separate,
but similar to BOPTEST) that enables evaluation of the optimality levels of different controllers for building energy sys-
tems, mainly focusing on optimal control and learning-based control for standardised building environments. This
framework, shown in Figure 4.4: KPI results from BOPTEST for the peak_heat_day (top) and typical_heat_day (bot-
tom) time-period scenarios and highly _dynamic electricity price scenario for the bestest_hydronic_heat_pump test case
of BOPTEST for different data-driven control strategies.

, leverages the development of a Functional Mock-up Unit (FMU) for generic dynamic modelling and simula-
tion, which can be flexibly extended to integrate with user-specific simulation environments that support FMU
exporting. The framework is open-source and available from: https://github.com/BE-HVACR/FMU-DRL-
DOCKER.
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Figure 4.3: The proposed flexible containerised framework for evaluations of building controllers (Fu et al., 2023).

This framework was used to compare the optimal control performance of both MPC and DRL controllers with
given computation budgets for a single zone fan coil unit system. The performance of different controllers
with DRL agents during 1-week testing in July, using Chicago, IL (USA) weather data, is summarised in Table
4.3. Agents were trained in a different 1-week period from testing. Optimality is calculated according to an
objective function based on a user-specific selection of trade-off weights among energy costs, thermal com-
fort, and control slew rates (i.e., the rate at which the control signal changes over time).

Compared to the best achievable performance (OPT), obtained through costly dynamic programming (DP),
the top-performing deep reinforcement learning (DRL) agent can reach up to 96.54% of the optimality. This
surpasses the best model predictive control (MPC) solution, which achieves 90.11%. However, due to the
stochastic nature of the training process, DRL agents are expected to achieve, on average, 90.42% of the
optimality, similar to the best MPC performance. Except for the Proximal Policy Optimisation (PPO) agent,
all DRL agents demonstrate better potential for approximating the optimal solution than the best MPC. They
also outperform MPC configured with a 32-step (H=32) prediction horizon (15 minutes per step), although
the MPC results improve with longer prediction horizons.

When evaluating practical performance metrics like energy cost and thermal discomfort, MPC outperforms
rule-based control (RBC) by 18.5% to 25.4%, while DRL is expected to offer gains of 18.9% to 25.7%. The
best DRL policy achieves improvements from 20.3% to 29.7% over RBC.

Although these comparisons assume idealised conditions (e.g., perfect models for MPC and flawless offline
training and deployment for DRL), they provide valuable insight into each method’s ability to approximate the
true optimal solution defined by the DP benchmark.

41/59


https://github.com/BE-HVACR/FMU-DRL-DOCKER
https://github.com/BE-HVACR/FMU-DRL-DOCKER

Table 4.3: Control performance of different controllers (Fu et al., 2023). H corresponds to the number of time steps in
the prediction horizon of MPC strategies.

RBC - 57.37 7.16 2.0 2.32 1.84 -746.94
H=4 47.08 5.9 14.8 0.5 1.4 -609.0
H=8 47.14 5.9 13.14 0.38 1.4 -606.33
H=16 471 5.8 11.31 0.5 1.43 -595.52
MPC
H=32 50.92 5.58 9.48 0.47 3.24 -578.38
H=48 56.38 5.31 8.0 0.56 5.38 -559.35
H=96 63.9 5.2 11.68 1.21 3.24 -556.95
DDQN 58.22 5.27 12.0 0.96 3.45 -563.97
DRL QRDQN 64.0 5.11 9.68 0.81 4.34 -549.47
PPO 46.92 5.78 18.24 0.92 2.32 -613.68
SAC 56.16 5.72 3.43 0.59 2.04 -580.71
OPT - 66.08 4.92 7.51 0.68 3.35 -506.82

Rule-based control (RBC): Fan speed is controlled by a Pl controller to track the zone temperature setpoint
“True” Optimal Control (OPT): Optimise over the whole simulation period using the emulator model;

Model Predictive Control (MPC): Optimise recedingly over the prediction horizon using the emulator model;

Deep Reinforcement Learning (DRL): Optimise future accumulative returns.

Acronyms: DQN: Double deep Q-network; QRDQN: Quantile regression deep Q-network; PPO: Proximal policy
optimisation; SAC: Soft actor-critic

This study assumed perfect training and deployment processes for both MPC and DRL, which can shed
insight into their possible maximum performance. While the control-oriented models used in MPC are as-
sumed to be free of modelling errors, the optimisation process itself is not. The resulting optimisation problem
is inherently nonlinear (and often non-convex), thus making it difficult to solve optimally. Since no “global”
optimiser can guarantee an optimal solution within practical computational limits, the MPC’s performance
may still fall short of its theoretical best. Evaluating upper bounds for nonlinear MPC performance remains
challenging without stepwise optimality, making it an open research topic.

Future work will compare both controllers in a realistic setting, with MPC using error-prone reduced-order
models and DRL adopting non-episodic training for imperfect environments

4.5 Discussion: Direct Comparisons Across Studies

Based on the studies performed, we can compare the MPC and RL approaches from Study 1 and Study 2
directly with each other and with a benchmark from a previous study (Arroyo et al., 2022). These studies
tested control approaches on the bestest heat pump_hydronic test case during the peak heat day and
typical_heat day time-period scenarios and the highly dynamic electricity price scenario.

In Table 4.4 and Figure 4.4 below, the controllers are categorised as MPC or RL, along with variations in the
control step size taken by each MPC. The Baseline approach is the baseline controller embedded in the
BOPTEST test case.
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Table 4.4: Comparison of data-driven approaches for the bestest_heat_pump_hydronic test case in BOPTEST.

Highly Dynamic Electricity Price Operational Thermal Operational Thermal Dis-
Costs Discomfort Costs comfort
(EUR/m2) (K-h/zone) (EUR/m2) (K-h/zone)
Baseline 0.91 8.38 0.41 9.44
Benchmark (Arroyo RL (DDQN) 0.82 2.80 0.51 180.84
etal., 2022) MPC 15 min Step 0.66 1.15 0.28 7.24
MPC 60 min Step 0.76 2.67 0.30 7.06
Study 1 [Walnum et MPC 15 min Step 0.80 0.02 0.37 6.39
al., 2020] MPC 60 min Step 0.82 1.15 0.34 7.99
Study 2 [Wanget  RL (DDPG) 0.81 0.87 0.35 7.73
al., 2023] MPC 60 min Step 0.71 0.00 0.31 8.29
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Figure 4.4: KPI results from BOPTEST for the peak_heat_day (top) and typical_heat_day (bottom) time-period scenar-
ios and highly_dynamic electricity price scenario for the bestest_hydronic_heat_pump test case of BOPTEST for differ-
ent data-driven control strategies.

A direct comparison of results from Study 1, Study 2, and (Arroyo et al., 2022) on the bestest hy-
dronic_heat_pump test case in BOPTEST shows that the most effective MPC strategies (those with short
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control steps and long prediction horizons) outperformed the best RL methods (DDPG and DDQN) used in
those studies. This aligns with findings from both (Arroyo et al., 2022) and (Wang et al., 2023).

It is worth noting that the MPC models varied: Study 1 used a three-state RC network, Study 2 used a one-
state RC network, and (Arroyo et al., 2022) used a five-state RC model. Meanwhile, the MPC controllers in
Study 1 used the MPC solution to control zone temperature set points, while the MPC controllers in Study 2
and (Arroyo et al., 2022) directly controlled the heat pump compressor speed.

Study 5 used a different environment and scenarios than BOPTEST, though it used a similar model as the
BOPTEST bestest_air test case. It found that the best MPC approach applied in the study performed ap-
proximately as well as the best RL approach on average. However, RL training involves a randomised pro-
cess, and considering the best RL training scenario, it outperformed the best MPC approach.

Activity B3 aimed to test data-driven control strategies in closed-loop simulation with virtual buildings. The
open-source BOPTEST framework and an open-source FMU-DRL framework made such virtual buildings
available. Five studies were carried out; they tested variations of MPC and RL, including grey-box and black-
box models for MPC, different prediction horizons and control steps, and RL learning algorithms. Two of the
studies were directly comparable since they were tested on the same BOPTEST test case (bestest_hy-
dronic_heat_pump) and testing scenarios; they are also comparable to other tests in the literature using the
same test case and scenarios. Study 4 utilised a different BOPTEST test case (bestest air) and standard
test scenarios, enabling the comparison of results with future studies.

The studies' findings consistently show that both MPC and RL significantly outperform rule-based control
strategies in maintaining thermal comfort while minimising energy costs under dynamic electricity pricing. In
the bestest_hydronic_heat_pump test case (Studies 1 and 2) and a related study from the literature (Arroyo
et al., 2022), MPC consistently outperformed RL. However, in another study focusing on exploring the limits
of control performance, in a different building type (Study 5), the top-performing RL method matched MPC
performance and even surpassed it in one stochastic learning scenario.

Among the RL methods evaluated in Study 2, Study 5, and (Arroyo et al., 2022), DDPG, DDQN, and QRDQN
emerged as the most effective. Meanwhile, Study 3 explored the integration of nonlinear differentiable ma-
chine learning models within an MPC framework, where MLP models performed well across both single-zone
(bestest_air) and multi-zone (multi-zone_office_simple_air) test cases. If MLP performance is insufficient,
LSTM is a viable alternative. Overall, the results show significant variation based on how each data-driven
control strategy is designed.

Future work should continue benchmarking different approaches for data-driven control on the same test
cases and scenarios to identify and refine trends leading to effective performance. Case study setups must
be consistent to allow meaningful comparisons across studies and advance shared knowledge in the building
operation community, as inconsistencies can hinder the identification of broader trends. Additional future
work should evaluate control approaches on more complex HVAC systems, diverse building types, and real-
world settings. Efforts like BOPTEST and IBPSA Project 2 aim to address these needs by creating new virtual
models, adding uncertainty features to BOPTEST, and coordinating further benchmarking of data-driven
control strategies.

Arroyo, J., Spiessens, F., & Helsen, L. (2022). Comparison of optimal control techniques for building en-
ergy management. Frontiers in Built Environment, 8.

Blum, D., Arroyo, J., Huang, S., Drgona, J., Jorissen, F., Walnum, H. T., Chen, T., Benne, K., Vrabie, D.,
Wetter, M., & Helsen, L. (2021). Building Optimisation Testing Framework (BOPTEST) for
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Data from sensors and actuators at all levels (appliances, buildings, districts, regions, etc.) will be important
for controlling buildings to unlock demand-side flexibility (Madsen et al., 2015). Controlling individual build-
ings in isolation is not enough to effectively address electricity grid issues. A hierarchy of control algorithms
is needed. This need calls for novel demand response methodologies, which must be based on control tech-
nologies operating at a wide range of spatial-temporal scales and aggregation levels. This chapter, based
on the work of Activity B4, briefly outlines methods for real-time implementation of forecasts and controllers
for grid-integrated smart buildings, focusing on how to use sensors in real-time controllers for buildings.

This chapter also provides insight into how to consider uncertainties from sensor measurements, unmeas-
ured or unrecognised disturbances, and model approximations. Enabling and unlocking the energy flexibility
of buildings requires good predictions about occupancy and weather. Nonetheless, forecasts regarding future
conditions come with inherent uncertainty; therefore, it is essential to employ methods that account for this
uncertainty in controllers, necessitating stochastic controllers.

The weather plays a key role in the energy consumption of buildings. Weather components like solar radia-
tion, ambient air temperature and wind speed are among the most important sources of uncertainty. Hence,
short-term forecasts of the influence of weather variables that include uncertainties must be carefully mod-
elled to achieve top-tier controllers (Thilker et al., 2021b; Thavlov and Madsen, 2015). To achieve state-of-
the-art control algorithms, occupancy-related disturbances must also be accounted for (Cali et al., 2019;
Zhang et al., 2024).

This chapter overviews data- and sensor-driven controllers for real-time demand response in buildings. While
machine learning models are widely used for quick load prediction and estimation of heating and cooling
needs, grey-box models, which retain physical meaning in their parameters, offer a key advantage by better
handling uncertainties from input variables, model approximations, and other influences.

Incorporating uncertainty information (from sensors, systems, disturbances, etc.) is not yet a standard prac-
tice. Most controllers in use today are mean-value-based. Since the uncertainty linked, e.g. to sensors for
solar radiation and occupancy, might be considerable, and since some control-related problems are linked
to constraints (such as comfort limits), it is important to take the uncertainties into account in sensor-based
control of buildings. This chapter focuses on forecasting and the uncertainties associated with key disturb-
ances, particularly those related to weather and occupancy. Additionally, it extends the discussion beyond
smart building control to include real-time controllers for grid and balancing services. To achieve this, we
introduce a hierarchical framework of controllers, each designed to address a specific grid or balancing chal-
lenge. This structured approach—integrating models, aggregators, and controllers — has been referred to
as a Smart-Energy OS (Operating System) (Banaei et al., 2023; Dognini et al., 2022; Madina et al., 2019).

The real-time collection of feedback data is at the core of the physical implementation of building controls.
There are two main types of feedback: sensor data and human interaction.

Physical variables. The energy management system monitors a building's indoor environment using various
sensors, such as temperature, humidity, illuminance, motion, and CO:2 sensors. These sensor networks pro-
vide necessary information for the intelligent control and management of building energy systems. The
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optimal placement of actuators and sensors in a building system is a challenging problem due to the complex
fluid flow physics governed by coupled nonlinear partial differential equations subjected to disturbances,
various sources of uncertainties, and complicated geometry (Vaidya et al., 2012).

Human feedback. The concept known as “human-in-the-loop” control focuses on using the occupants as
comfort sensors in the control loop. Kane (2018) presents the idea of human-perceived thermal comfort as
a control objective, as opposed to the conventional approach of controlling the indoor air temperature. An
important question to be answered is how to implement such a control scheme in practice. An attempt at this
is made by Cali et al. (2022), presenting a human-in-the-loop-based controller, where a mobile app was
developed that enables occupants to deliver feedback based on their perceived comfort. This way, the human
becomes the sensor and gives feedback to the system rather than a sensor on a wall or in a thermostat.
Information from occupants can be combined with information from traditional sensors.

As Chapter 3 examines the suitability of grey-box models for data-driven MPC, further elaboration is unnec-
essary here. However, forecasting disturbances is a critical component of grey-box models. The term dis-
turbance refers to an influential input beyond the operator’s control; weather variables are a good example.
Disturbances (e.g., solar radiation and occupancy) can be significant and highly time-varying for buildings.
Consequently, for real-time implementations, it is important to integrate short-term probabilistic perspectives.
This section briefly describes methodologies for integrating disturbances into real-time control setups.

Future energy systems will be weather-driven; consequently, accurate knowledge and description of future
weather events are crucial. Solar radiation plays a significant role in buildings. These fluctuations are criti-
cally important to a building’s HVAC system and the needed heating. High-quality forecasts are required to
control energy systems on small scales (buildings, residential houses, batteries, etc.) and large scales (dis-
tricts, electricity grids, etc.). The following sections will provide an overview of the most common ways of
forecasting solar radiation and outdoor air temperature. Lastly, examples of embedded disturbance predic-
tion models in controllers will be given.

Solar radiation is one of the most important short-term disturbances. The literature proposes various grey-
box-related models and linear stochastic models. AR and ARX models are popular stochastic modelling
schemes for solar radiation estimation (Amaro e Silva and C. Brito, 2018; Boland, 2015; Bacher et al., 2009).
These studies also investigate the importance of meteorological forecasts related to short-term forecasting.
They have found that the available solar radiation is the most important input to the model among the list of
typically provided meteorological forecasts.

In well-insulated buildings, the short-term dynamic changes of the outdoor air temperature do not significantly
influence the indoor air temperature. A building envelope can be thought of as low-pass filter, which filters
out the fluctuating dynamics (Nielsen and Madsen, 2006). For this reason, in well-insulated buildings, the
heating demand is primarily determined by the outdoor temperature signal after it has been low-pass filtered.
Thus, in absence of a significant solar radiation input, the heat required to keep a comfortable indoor tem-
perature during several hours is mostly constant. Dynamical models and auto-regressive (AR) and moving
average (MA) models are natural choices for modelling outdoor air temperature. Florita and Henze (2009)
estimate and compare different moving average models with neural network models. The comparison yielded
no conclusive evidence of superior performance for either type
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The goal of optimising the building's indoor air climate is to satisfy the building's users. Consequently, fore-
casting when and to what extent the building is occupied is crucial to scheduling its operation. Current stand-
ards for dealing with variable occupancy levels in buildings are, among others, fixed-schedule operation (e.g.
nightly temperature setbacks to save energy during unoccupied periods) and occupation-detection-triggered
activation (Nagy et al., 2023) (using, e.g. radio- or video cameras to detect occupants (Adamopoulou et al.,
2016)). These control methods are straightforward to implement but have drawbacks (Dobbs and Hencey,
2014). Fixed-schedule operation cannot adjust for occupant numbers, and occupancy-triggered control fails
to maintain a satisfactory indoor climate promptly due to thermal time constants.

The literature suggests that numerous methods can improve upon the baseline strategies mentioned above
(i.e., fixed schedules and occupancy-triggered control). These methods include supervised and unsupervised
machine learning (clustering, ANNs, LSTM networks, etc.), classical time series models such as ARIMA-
types and discrete-state Markov models, and stochastic differential equations. Vazquez and Kastner (2011)
use clustering techniques (such as C-means and self-organising maps) to forecast occupation levels. Neural
network-based models such as ANNs (Schiele et al., 2011) and (Hitimana et al., 2021) have also been im-
plemented and tested for a hospital room and a big office room, respectively, and suggests good perfor-
mance, and can even supply satisfactory forecasts one week ahead (Pesic ef al., 2019). Discrete-time, dis-
crete state-space Markov chains have been investigated and tested (Li and Dong, 2018; Andersen et al.,
2013) with promising results. Diurnal variations in occupant behaviour have been modelled using continuous-
time Markov chains. (Zhang et al., 2024). Wolf et al. (2019) use a stochastic differential equation approach
to forecast the COz: levels in rooms, which are good indicators for occupancy.

Embedded disturbance models are mathematical representations within the control system that account for
disturbances. Alternatively, mean value forecasts from third-party sources or persistent forecasts (assuming
that conditions will remain unchanged) can be used. Embedded disturbance models in control are presented
by (Hou et al., 2022b; Pippia et al., 2021; and Thilker et al., 2021b). Hou et al. (2022b) propose an error
model that corrects and improves the supplied weather forecasts using easily accessible local weather ob-
servations. Pippia et al. (2021) introduce a scenario-based MPC where multivariate, probabilistic models
generate coherent scenarios for control. Thilker et al. (2021b) briefly outlined an approach that included a
description of the amount of cloud cover, solar radiation, net radiation, and ambient air temperature. Grey-
box models, using stochastic differential equations (see Section 3.5.1), offer a unified framework for fore-
casting disturbances and describing both the building dynamics and disturbances.

This section reviews current standard stochastic controllers (i.e., control approaches) that can account for
stochasticity in either the model or disturbances. Such controllers include, e.g., Gaussian controllers (where
model noise is assumed to be Gaussian), chance-constrained controllers, and multi-stage controllers.

Due to their simplicity and broad applicability, a widely used class of controllers (i.e., control approaches)
relies on a linear system model with additive Gaussian noise and a quadratic (or simpler) objective function.
Examples can be found in West et al. (2014), Drgona et al. (2020), Cigler et al. (2013), and Siroky et al.
(2011), where the quadratic penalty is used. Their popularity stems from several factors. For instance, build-
ing thermal dynamics is typically linear, which justifies using additive Gaussian noise (Bacher & Madsen,
2011). This assumption holds when disturbances are well-modelled. Quadratic or piecewise quadratic ob-
jective functions are suitable due to their smoothness and flexibility. Such a controller includes uncertainty in
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its formulation, and the solution is given in closed form by taking the expected value in the optimal control
problem formulation. The objective function is given by:

0 =E| [ 1), d(@) 1, (x| 1)

where E is the expectation operator, 1 and 1 , are respectively the stage cost and cost-to-go terms.

Here 1 is either linear or quadratic (or a combination of both):
1(x,u,d)=x'Qx+q¢ x+u'Qu+qlu (5.2)

An objective function balancing system deviation penalties and economic costs enables flexible trade-offs
(Thilker et al., 2022). When stochastic grey-box models are used, uncertainty can be directly integrated into
model predictive control (Wytock et al., 2017; Zhang et al., 2013). In linear-quadratic setups with Gaussian
noise, forecast scenarios support multi-stage control; otherwise, mean-based controllers may suffice.

The advantages mentioned above should be seen in the light of compromises (Eser et al., 2021; Schirrer et
al., 2016). If the actual system is non-linear, the modeller faces a trade-off: (a) he/she can choose to include
the non-linearity in the model but is left with a nonlinear optimal control problem, or (b) he/she can approxi-
mate the non-linearity with a linear model but is rewarded with a more robust and faster framework from the
linear quadratic controller. One must determine case-by-case whether the advantages of the linear frame-
work compensate for the performance loss caused by linearisation (PZolka et al., 2016). Zanetti et al. (2023)
found that simpler solutions can often match the performance of non-linear systems.

Alternative ways to obtain the benefits of both linear and non-linear models have also been proposed. It is
an active research field, and results point toward promising improvements. P¢olka et al. (2016); Mork et al.
(2022); Ostadijafari and Dubey (2019) address the challenges posed by non-linear MPC, particularly the
additional complexity it introduces into the MPC framework. They propose a way to get around this by for-
mulating a linear time-varying model (which keeps the MPC problem convex and simple) and comparing it
to MPC using the linear time-invariant and non-linear models. Results suggest significant improvement over
the linear model and performance close to that of the non-linear model.

In the case of heating and cooling units, these are often operated on an on/off basis (Kim et al., 2015; Kim
and Braun, 2018; Kim et al., 2022; LeBreux et al., 2009). These kinds of problems are often solved as integer
problems, since this is a natural approach to represent the on/off binary operation (Kim et al., 2022). How-
ever, continuous approaches to the on/off operation exist in the literature (Brok et al., 2022), where the opti-
misation variables are the periods between switches (Axelsson et al., 2005). This approach has the ad-
vantage of being computationally efficient compared to integer programs since the continuous nature of the
optimisation is preserved, and analytical gradients can be computed efficiently.

MPC controllers have been widely used in different applications due to their simplicity and robustness in
creating optimised controllers. However, one drawback of their current form is that formulating these control-
lers is a time-consuming task that must be performed by experts. Integrating reinforcement learning (RL)
algorithms offers new possibilities for developing intelligent decision-making systems, as these methods de-
pend solely on data collected from the environment. A popular introduction to the concept of RL can be found
in Sutton and Barto (2018). Numerous examples of RL used for building climate control exist in the literature.
Neural networks are popular as an underlying model for an RL controller (Elnour et al., 2022; Yang et al.,
2021; Jin et al., 2021). However, most RL-based optimal control studies for indoor climate control of buildings
are simulation-based and hence not tested in real life. An experimental example is given in (Brandi et al.,
2020), where they achieve 5-15% performance improvement. In general, the literature on RL implementation
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is very scarce, which is partly due to the time and data-consuming learning phase. Wang and Hong (2020)
report that only 11% of reinforcement learning controllers were implemented and tested in actual buildings,
leaving a research gap between theory and practice for RL. Comparisons between MPC and RL have shown
that each method offers specific benefits (Ernst et al., 2009; Lin et al., 2020). In their flexibility study, Mbuwir
et al. (2019) found that both approaches yielded comparable results.

Future smart energy systems will require linking local controllers (e.g. in buildings) with high-level electricity
markets operating at larger scales. Rather than managing voltage, frequency, and congestion through distinct
markets, energy flexibility research proposes addressing these services via integrated, hierarchical control
structures (Madina et al., 2019; Madsen et al., 2016a; Brok et al., 2019). In this section, we first show how
the controllers introduced earlier can function as low-level controllers within a hierarchical setup aimed at
solving grid and ancillary service issues in future smart energy systems. We then briefly discuss how these
principles can be generalised to broader multi-level control problems, and how such problems can be linked
to existing electricity market structures.

The previous sections have shown how to develop controllers for smart buildings based on forecasts of
prices, weather conditions, and indoor comfort requirements. This approach can be further applied to gener-
ate price signals that subtly steer the demand in smart buildings (Halvgaard et al., 2012). The basic concept
is illustrated by Figure 5.1a, where a smart building takes a pricing signal (input) and, as a result, consumes
a certain energy demand (output). This analysis enables the creation of a model, called the Flexibility Func-
tion (FF), that predicts demand as a dynamic response to price.

This Flexibility Function could be any type of dynamic model. In (Junker et al., 2018), a linear model (finite impulse re-
sponse model) is suggested, but in (Junker et al., 2020) it is shown that a grey-box model using SDEs is more appro-
priate. After defining an FF, a second supervisory controller can be implemented to manage energy demand according

to certain objectives, using energy price as the primary input for decision-making. Figure 5.2: Hierarchical control and
markets.

b shows that the FF can generate prices based on predefined reference signals or targets. Note how the
demand returns information into the “price generator/controller”, thereby closing the control loop. In this con-
text, the FF plays a role similar to that of a control-oriented model used for local MPC in buildings.

E Flexibility Function
' l I
'
Reference Price Generator 3
Price Demand (Controller) 4
—_— —
'
\ '
' '

(@) (b)

Figure 5.1: The demand of a smart building can be predicted as a function of price.

Flexibility Function

Let FF be the Flexibility Function, which takes a price signal as input (cu) and outputs the expected demand,
while 77 is a reference load. A simple upper-level optimisation can be formulated to minimise the difference
between the reference load and the demand predicted by the FF function in response to a price signal.
Combining this upper-level optimisation problem with an optimal control problem for a single building (lower
level) reveals how the price signal (cu) couples the two in an elegant fashion:
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In the lower level, the inputs (uk) are adjusted in response to the optimised price signal. Notice that the two
optimisation problems are solved independently, thus preserving the building owners' autonomy and privacy
while allowing an aggregator to utilise the energy flexibility. In practice, each aggregator will manage numer-
ous smart buildings, each with its independent control challenges. This method scales well to this case since
the computational burden for the upper-level remains constant, with the Flexibility Function simply represent-
ing the aggregated response from the smart buildings. The concept is one of the core elements of the Smart
Energy OS framework, which is a hierarchy of controllers for providing grid and balancing services (Madina
etal., 2019).

The above-described hierarchical control setup couples the lowest level (buildings) and the upper level (e.g.,
a group of buildings or a district). However, hierarchical control can be utilised on different levels and for
different tasks. Ancillary services address supply and demand imbalances to help operators maintain a reli-
able power grid. Building heating, ventilation, and air-conditioning (HVAC) systems are well-suited for such
services due to their significant energy use and flexible demand. Qureshi and Jones (2018) proposed a two-
level hierarchical control approach: a lower-level thermal flexibility controller adjusts temperature setpoints
to maximise thermal flexibility, while a higher-level electrical flexibility controller manages HVAC operation to
optimise grid support. Both layers use robust optimisation methods. Blum et al. (2017) introduced a method
to define and recursively quantify the opportunity costs of ancillary services provided by building HVAC sys-
tems, allowing for predictive accounting of such services. Huang et al. (2019) proposed a two-level hierar-
chical control strategy for managing demand flexibility in large building groups. By modelling the group as a
unified “virtual” building and applying a genetic algorithm to determine optimal performance, then coordinat-
ing each building’s operation through non-linear programming, their approach drastically cut computation
time, requiring only one-eighth of the time needed by conventional decentralised methods.

Lankeshwara et al. (2022) proposed a hierarchical control framework to coordinate residential air condition-
ers across multiple households under uncertainty. The objective is to meet a specific combined power de-
mand for the total consumption while meeting each household’s thermal constraints. Recognising the privacy
and computational limitations of a fully centralised controller, which would require access to detailed thermal
models, occupant preferences and real-time data, the authors adopted an Alternating Direction Method of
Multipliers (ADMM) algorithm (Boyd et al., 2011). In this setup, the aggregator (the upper-level controller)
knows only the total power consumption and computes a set of auxiliary and dual variables used in the
decentralised (local) controllers. These variables are updated periodically between control intervals.

Building microgrids with distributed RESs and storage reduces transmission losses and grid dependency.
Yamashita et al. (2021) defined hierarchical control (HC) in three layers: primary control manages power
converters, secondary control corrects voltage and frequency deviations, and tertiary control optimises en-
ergy trading to balance supply and demand. RESs cause variability in the AC grid, which requires equilibrium
between production and consumption. DC microgrids, powered by solar panels or fuel cells, offer a solution
for stability. Jin et al. (2014) propose a three-level control strategy for DC microgrids: Level | (primary) main-
tains bus voltage, Level Il (secondary) regulates voltage and manages battery charge/discharge, and Level
Il (tertiary) addresses extreme conditions like load or resource changes through load shedding or ballast.
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Future smart energy systems will require a connection between controllers operating at local scales and high-
level markets operating at large scales. A range of all relevant spatial aggregation levels (building, district,
city, region, country, etc.) must be considered. At the same time, control or market solutions must ensure
that the power system is balanced at all future temporal scales. As a result, data-driven solutions for manag-
ing flexible electrical energy systems should be implemented across all spatial and temporal scales. Several
solutions have recently been proposed in the literature to address this challenge, including Transactive En-
ergy, Peer-to-Peer, and Control-Based methods, as described in De Zotti et al. (2018).

Traditionally, power systems are operated through market-based bidding, on multiple markets corresponding
to different horizons (e.g. day-ahead, intra-day, balancing and frequency regulation). These bids are usually
static and include two main components: volume (the amount of power provided) and duration. Nevertheless,
a fundamental shift is needed in how low-level flexibility is activated. Currently, supply and demand curves
are established for each market horizon based on all submitted bids. In mathematical terms, these curves
are typically static and deterministic. A merit-order dispatch is then applied to minimise generation costs.
However, when generation comes from wind or solar sources, the supply curve becomes stochastic, and
demand-side flexibility must instead be described dynamically using the Flexibility Function. Consequently,
there is a need to introduce new digitised markets that are both dynamic and stochastic. Rather than relying
on multiple markets for different purposes (e.g., frequency, voltage, congestion, etc.), across varying time
horizons, we propose using concepts based on the Flexibility Function and stochastic control theory, as
outlined in the previous section for the two-level case, in the framework called the Smart Energy OS (Madsen
et al., 2015, 2016b; Madina et al., 2019; Tohidi et al., 2024).

When we “zoom out” in space and time, such as by considering the load across a large area over several
days or just the next day, the dynamics and randomness become less significant, allowing the use of con-
ventional market principles, as shown in Figure 5.2. Conversely, when we “zoom in” on higher temporal and
spatial resolutions (like, for instance, a house), the dynamics and stochasticity become important, and con-
sequently, we will suggest using methods for increased flexibility as discussed in this report. The total setup
consists of a combination of all these options, and the best option depends on the “zoom level.” In conclusion,
future digitised market principles should incorporate a hierarchical structure, with traditional market-based
bidding used at higher levels and a control-based approach at lower levels.

Space
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' s . Clearing
Region
Purpose based :
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Figure 5.2: Hierarchical control and markets.
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Several good review papers already exist on simulation-based methods for model predictive control in smart
grid-enabled buildings. However, these models are mostly deterministic and optimised for long-term simula-
tions (e.g., for design purposes). On the other hand, there is a gap in the literature concerning real-time,
sensor-based control. There is a critical need to focus on short-term prediction horizons and techniques to
address sensor and disturbance-related uncertainties. This chapter has discussed strategies to address this
need by integrating approaches suitable for real-time control, including stochastic modelling, forecasting
methods and adequate control schemes. Furthermore, this section outlines methodologies for characterising
and leveraging buildings' energy flexibility to provide services for energy grids. This section has discussed
using grey-box models based on stochastic differential equations to represent partially observed states.
These models bridge physics-based and data-driven approaches and are often seen as data-driven digital
twins, optimised for real-time use and capable of integrating sensor uncertainty for improved forecasting,
control, and optimisation. The MPC approaches discussed in this section incorporate this uncertainty. While
current controllers rely on physical sensors, future approaches must also integrate occupant feedback. Like-
wise, energy grids require improved digital infrastructure to accommodate “smart grid-ready” buildings.
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This report outlines the findings from Annex 81, focusing on how data can enhance building performance,
specifically through Model Predictive Control (MPC), a control approach based on using a model to optimise
control sequences. Some conclusions drawn from the activities within Subtask B are as follows:

e Structuring data properly is necessary. Control applications are very diverse, but in all of them,
data collection is necessary to create and calibrate models and periodically update the model's state
in an implementation carried out in real-time. With a well-organized database, it is possible to study
different modelling methodologies.

o Strategies for creating control-oriented models are as diverse as the types of buildings that
exist, mechanical configurations, as well as the different climatic and energy market conditions that
exist around the world. However, "grey box" and "black box" models tend to be preferred because of
the ease of parameter calibration, and in the case of grey-box models, how they can incorporate the
treatment of uncertainty. Significant effort is required to standardise model development or at least
establish uniform procedures for creating models.

o A platform like BOPTEST is useful as it provides a standardised environment for comparing
the performance of different control strategies. Ongoing research is required to build a "library of
emulators" with a sufficiently general application so that its results are informative and relevant for a
vast number of cases. It is interesting to see how this strategy allows easy comparison of the results
of control strategies. Moreover, since emulators only need to be created once, a very significant
amount of effort can be saved in the long run when testing control strategies.

¢ The implementation of MPC in real buildings involves dealing with uncertainty. Instead of trying
to obtain a "perfect" control-oriented model (a misleading and unnecessary goal), it is important to
work with approximate models, as long as it is possible to incorporate uncertainty as a necessary
reality. Advanced modelling techniques are provided for this. More case studies are required to
demonstrate the efficacy of these techniques in real world applications

e Control is also required to better integrate building energy consumption with energy supply systems
and improve energy reliability and energy market efficiency. This can be achieved by using multi-
level hierarchical control strategies. A flexibility function is proposed as a suitable control-oriented
model that bridges the building level with the energy system level (or other aggregation levels), taking
into account uncertainty.

Much remains to be done to accelerate the deployment of MPC as a widespread solution in the control
industry. Annex 81 has inspired the launch of an ASHRAE-sponsored project (ASHRAE 1934-TRP) focused
on surveying the points of view of numerous industry practitioners. This study aims to identify barriers and
opportunities for overcoming challenges in deploying advanced data-driven MPC and other control strate-
gies. At the time of writing, this research project is being conducted under contract, with results expected by
the end of 2025.
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